Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Biol. Res ; 48: 1-8, 2015. graf, tab
Article Dans Anglais | LILACS | ID: biblio-950789

Résumé

BACKGROUND: Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-ß (ß1, ß5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-ß; in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear. RESULTS: After transfection with integrin-ß1 siRNA or integrin-ß5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (µÎµ) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-ß1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-ß5 siRNA had little effect on the osteoblastic differentiation induced by thestrain. At thesametime, theresultofECM formation promoted by the strain, was similar to the osteoblastic differentiation. CONCLUSION: Integrin-ß1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-ß5 is not involved in the osteoblasts response to the tensile strain.


Sujets)
Animaux , Souris , Ostéoblastes/physiologie , Résistance à la traction/physiologie , Différenciation cellulaire/physiologie , Antigènes CD29/physiologie , Chaines bêta des intégrines/physiologie , Matrice extracellulaire/physiologie , Contrainte mécanique , Transfection , Lignée cellulaire , Technique de Western , Petit ARN interférent , Prolifération cellulaire/physiologie , Réaction de polymérisation en chaine en temps réel
2.
Article Dans Anglais | IMSEAR | ID: sea-135046

Résumé

Background: Mesenchymal stem cells (MSCs) known to be sensitive to mechanical stimulus. This type of stimulus plays a role in cellular differentiation, so that it might affect MSCs differentiation toward cardiomyocytes. Objectives: Investigate the effect of mechanical stimulus on MSCs differentiation toward cardiomyocytes. Methods: The adipose tissue-derived MSCs were induced to differentiate with 5-azacytidine, and stimulated by one Hz mechanical stretching up to 8%. After 10 days, the cell’s cardiac markers and cardiogenesis-related genes were detected by immumohistochemistrical staining and reverse transcriptase-polymerase chain reaction, and the cell’s ATPase activity was detected. Results: The cyclic mechanical stretching enhanced the expression of cardiogenesis-related genes and cardiac markers, and stimulated the activity of Na+-K+-ATPase and Ca2+-ATPase in the MSCs treated with 5-azacytidine. Without 5-azacytidine pre-treatment, cyclic mechanical stretch alone has little effect. Conclusion: Mechanical stretch combined with 5-azacytidine treatment could accelerate MSCs differentiation toward cardiomyocytes.

SÉLECTION CITATIONS
Détails de la recherche