RÉSUMÉ
As a low-load physiological monitoring technology, wearable devices can provide new methods for monitoring, evaluating and managing chronic diseases, which is a direction for the future development of monitoring technology. However, as a new type of monitoring technology, its clinical application mode and value are still unclear and need to be further explored. In this study, a central monitoring system based on wearable devices was built in the general ward (non-ICU ward) of PLA General Hospital, the value points of clinical application of wearable physiological monitoring technology were analyzed, and the system was combined with the treatment process and applied to clinical monitoring. The system is able to effectively collect data such as electrocardiogram, respiration, blood oxygen, pulse rate, and body position/movement to achieve real-time monitoring, prediction and early warning, and condition assessment. And since its operation from March 2018, 1 268 people (657 patients) have undergone wearable continuous physiological monitoring until January 2020, with data from a total of 1 198 people (632 cases) screened for signals through signal quality algorithms and manual interpretation were available for analysis, accounting for 94.48 % (96.19%) of the total. Through continuous physiological data analysis and manual correction, sleep apnea event, nocturnal hypoxemia, tachycardia, and ventricular premature beats were detected in 232 (36.65%), 58 (9.16%), 30 (4.74%), and 42 (6.64%) of the total patients, while the number of these abnormal events recorded in the archives was 4 (0.63%), 0 (0.00%), 24 (3.80%), and 15 (2.37%) cases. The statistical analysis of sleep apnea event outcomes revealed that patients with chronic diseases were more likely to have sleep apnea events than healthy individuals, and the incidence was higher in men (62.93%) than in women (37.07%). The results indicate that wearable physiological monitoring technology can provide a new monitoring mode for inpatients, capturing more abnormal events and provide richer information for clinical diagnosis and treatment through continuous physiological parameter analysis, and can be effectively integrated into existing medical processes. We will continue to explore the applicability of this new monitoring mode in different clinical scenarios to further enrich the clinical application of wearable technology and provide richer tools and methods for the monitoring, evaluation and management of chronic diseases.
Sujet(s)
Humains , Rythme cardiaque , Monitorage physiologique , Mouvement , Syndromes d'apnées du sommeil , Dispositifs électroniques portablesRÉSUMÉ
To achieve continuously physiological monitoring on hospital inpatients, a ubiquitous and wearable physiological monitoring system SensEcho was developed. The whole system consists of three parts: a wearable physiological monitoring unit, a wireless network and communication unit and a central monitoring system. The wearable physiological monitoring unit is an elastic shirt with respiratory inductive plethysmography sensor and textile electrocardiogram (ECG) electrodes embedded in, to collect physiological signals of ECG, respiration and posture/activity continuously and ubiquitously. The wireless network and communication unit is based on WiFi networking technology to transmit data from each physiological monitoring unit to the central monitoring system. A protocol of multiple data re-transmission and data integrity verification was implemented to reduce packet dropouts during the wireless communication. The central monitoring system displays data collected by the wearable system from each inpatient and monitors the status of each patient. An architecture of data server and algorithm server was established, supporting further data mining and analysis for big medical data. The performance of the whole system was validated. Three kinds of tests were conducted: validation of physiological monitoring algorithms, reliability of the monitoring system on volunteers, and reliability of data transmission. The results show that the whole system can achieve good performance in both physiological monitoring and wireless data transmission. The application of this system in clinical settings has the potential to establish a new model for individualized hospital inpatients monitoring, and provide more precision medicine to the patients with information derived from the continuously collected physiological parameters.