Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Yonsei med. j ; Yonsei med. j;: 657-664, 2022.
Article de Anglais | WPRIM | ID: wpr-939388

RÉSUMÉ

Purpose@#We aimed to analyze changes in suprascapular nerve (SSN) position within the suprascapular notch during in vivo shoulder abduction. @*Materials and Methods@#Three-dimensional models of the shoulder complex were constructed based on magnetic resonance imaging of the brachial plexus (BP-MR) in a patient diagnosed with SSN dysfunction but normal scapular movement. Using BP-MR in neutral position and computed tomography data on shoulder abduction, shoulder abduction was simulated as the transition between two positions of the shoulder complex with overlapping of a neutral and abducted scapula. SSN movement during abduction was evaluated using the finite element method. Contact stress on the SSN was measured in the presence and absence of the transverse scapular ligament (TSL). @*Results@#In the neutral position, the SSN ran almost parallel to the front of the TSL until entering the suprascapular notch and slightly contacted the anterior-inferior border of the TSL. As shoulder abduction progressed, contact stress decreased due to gradual loss of contact with the TSL. In the TSL-free scapula, there was no contact stress on the SSN in the neutral position. Towards the end of shoulder abduction, contact stress increased again as the SSN began to contact the base of the suprascapular notch in both TSL conditions. @*Conclusion@#We identified changes in the position of the SSN path within the suprascapular notch during shoulder abduction. The SSN starts in contact with the TSL and moves toward the base of the suprascapular notch with secondary contact. These findings may provide rationale for TSL release in SSN entrapment.

2.
Article de Anglais | WPRIM | ID: wpr-770712

RÉSUMÉ

BACKGROUND: Acromioclavicular (AC) stability is maintained through a complex combination of soft-tissue restraints that include coracoclavicular (CC), AC ligament and overlying muscles. Among these structures, the role of the CC ligament has continued to be studied because of its importance on shoulder kinematics, especially after AC injury. This study was designed to determine the geometric change of conoid and trapezoid ligaments and resulting stresses on these ligaments according to various scapular motions. METHODS: The scapuloclavicular (SC) complex was isolated from a fresh-frozen cadaver by removing all soft tissues except the AC and CC ligaments. The anatomically aligned SC complex was then scanned with a high-resolution computed tomography scanner into 0.6-mm slices. The Finite element model of the SC complex was obtained and used for calculating the stress on different parts of the CC ligaments with simulated movements of the scapula. RESULTS: Average stress on the conoid ligament during anterior tilt, internal rotation, and scapular protraction was higher, whereas the stress on the trapezoid ligament was more prominent during posterior tilt, external rotation, and retraction. CONCLUSIONS: We conclude that CC ligament plays an integral role in regulating horizontal SC motion as well as complex motions indicated by increased stress over the ligament with an incremental scapular position change. The conoid ligament is the key structure restraining scapular protraction that might occur in high-grade AC dislocation. Hence in CC ligament reconstructions involving only single bundle, every attempt must be made to reconstruct conoid part of CC ligament as anatomically as possible.


Sujet(s)
Phénomènes biomécaniques , Cadavre , Luxations , Ligaments , Muscles , Scapula , Épaule
3.
Article de Anglais | WPRIM | ID: wpr-70765

RÉSUMÉ

BACKGROUND: Acromioclavicular (AC) stability is maintained through a complex combination of soft-tissue restraints that include coracoclavicular (CC), AC ligament and overlying muscles. Among these structures, the role of the CC ligament has continued to be studied because of its importance on shoulder kinematics, especially after AC injury. This study was designed to determine the geometric change of conoid and trapezoid ligaments and resulting stresses on these ligaments according to various scapular motions. METHODS: The scapuloclavicular (SC) complex was isolated from a fresh-frozen cadaver by removing all soft tissues except the AC and CC ligaments. The anatomically aligned SC complex was then scanned with a high-resolution computed tomography scanner into 0.6-mm slices. The Finite element model of the SC complex was obtained and used for calculating the stress on different parts of the CC ligaments with simulated movements of the scapula. RESULTS: Average stress on the conoid ligament during anterior tilt, internal rotation, and scapular protraction was higher, whereas the stress on the trapezoid ligament was more prominent during posterior tilt, external rotation, and retraction. CONCLUSIONS: We conclude that CC ligament plays an integral role in regulating horizontal SC motion as well as complex motions indicated by increased stress over the ligament with an incremental scapular position change. The conoid ligament is the key structure restraining scapular protraction that might occur in high-grade AC dislocation. Hence in CC ligament reconstructions involving only single bundle, every attempt must be made to reconstruct conoid part of CC ligament as anatomically as possible.


Sujet(s)
Phénomènes biomécaniques , Cadavre , Luxations , Ligaments , Muscles , Scapula , Épaule
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE