Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Anglais | WPRIM | ID: wpr-999683

RÉSUMÉ

Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl-2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.

2.
J. vet. sci ; J. vet. sci;: 435-444, 2016.
Article de Anglais | WPRIM | ID: wpr-110501

RÉSUMÉ

Curcumin protects the skin against radiation-induced epidermal damage and prevents morphological changes induced by irradiation skin, thereby maintaining the epidermal thickness and cell density of basal layers. In this study, the effects of topical curcumin treatment on radiation burns were evaluated in a mini-pig model. Histological and clinical changes were observed five weeks after radiation exposure to the back (⁶⁰Co gamma-radiation, 50 Gy). Curcumin was applied topically to irradiated skin (200 mg/cm²) twice a day for 35 days. Curcumin application decreased the epithelial desquamation after irradiation. Additionally, when compared to the vehicle-treated group, the curcumin-treated group showed reduced expression of cyclooxygenase-2 and nuclear factor-kappaB. Furthermore, irradiation prolonged healing of biopsy wounds in the exposed area, whereas curcumin treatment stimulated wound healing. These results suggest that curcumin can improve epithelial cell survival and recovery in the skin and therefore be used to treat radiation burns.


Sujet(s)
Biopsie , Brûlures , Numération cellulaire , Curcumine , Cyclooxygenase 2 , Cellules épithéliales , Exposition aux rayonnements , Peau , Cicatrisation de plaie , Plaies et blessures
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE