RÉSUMÉ
Abstract: Cerrado is the second largest biome in Brazil and majorly contributes to the country's grain production. Previous studies on soil metagenomics from the Cerrado revealed an outstanding microbial diversity. In this study, the abundance of pathogenic fungi was analyzed using metagenomic sequences of the Cerrado soils under native vegetation, and under agriculture with no-tillage and conventional tillage. In total, 128,627 sequences of fungi were identified, with 43,439 representing pathogenic fungi and were distributed as follows: native 17,301 (40%), no-tillage 13,780 (32%), and conventional tillage 12,358 (28%). We identified 41 pathogenic fungal species associated with human and animal infections. The data analysis revealed that the native soils had a higher relative abundance of fungal sequences, similar to pathogenic species sequences, in relation to the total eukaryotic sequences, than the conventional tillage and no-tillage treatments, which observed a reduction in fungal abundance because of anthropogenic activities.
RÉSUMÉ
ABSTRACT The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases > laccases > cellulases > proteases > amylases > pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases.
Sujet(s)
Sol/composition chimique , Protéines fongiques/génétique , Archéobactéries/enzymologie , Protéines d'archée/génétique , Champignons/enzymologie , Hydrolases/génétique , Microbiologie du sol , Glycine max/croissance et développement , Triticum/croissance et développement , Brésil , Archéobactéries/isolement et purification , Archéobactéries/classification , Archéobactéries/génétique , Zea mays/croissance et développement , Agriculture , Métagénome , Métagénomique , Champignons/isolement et purification , Champignons/classification , Champignons/génétiqueRÉSUMÉ
Abstract Bradyrhizobium embrapense CNPSo 2833T is a nitrogen-fixing symbiont of the legume pasture Desmodium. Its draft genome contains 8,267,832 bp and 7876 CDSs. The symbiotic island includes nodulation and nitrogen fixation genes resembling the operon organization of B. japonicum. Several CDSs related to secretion proteins and stress tolerance were also identified.