Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres








Gamme d'année
1.
Chinese Journal of Epidemiology ; (12): 1139-1145, 2023.
Article de Chinois | WPRIM | ID: wpr-985645

RÉSUMÉ

Objective: To construct a cervical cancer risk prediction model based on nested case-control study design and Yinzhou Health Information Platform in Ningbo, and provide reliable reference for self-risk assessment of cervical cancer in local women. Methods: In local women aged 25-75 years old who had no history of cervical cancer registered in Yinzhou before October 31, 2018, a follow up was conducted for at least three years, the patients who developed cervical cancer during the follow up period were selected as the case group and matched with a control group at a ratio of 1∶10. The prediction indicators before the onset was used in model construction. Variables were selected by Lasso-logistic regression, the variables with non-zero β were selected to fit the logistic regression model and Bootstrap was used for internal validation. The discrimination of the model was evaluated by area under the receiver operating characteristic curve(AUROC), and the calibration was evaluated by calibration curve and Hosmer-Lemeshow test. Results: The prediction indicators included in the final model were age, smoking status, history of cervicitis, history of adenomyosis, HPV testing, and thinprep cytologic test. The AUROC calculated in the internal validation was 0.740 (95%CI:0.739-0.740), and the calibration curve was almost identical with the ideal curve, P=0.991 in Hosmer-Lemeshow test, indicating that the model discrimination and calibration were good. Conclusions: In this study, a simple and practical cervical cancer risk prediction model was developed. The model can be used in general population with strong interpretability, good discrimination and calibration in internal validation, which can provide a reference for women to assess their risk of cervical cancer.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE