RÉSUMÉ
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a leading cause of human deaths due to any infectious disease worldwide. However, infection of Mycobacterium bovis, primarily an animal pathogen, also leads to the development of ‘human tuberculosis’. Infected animals have been considered the major source of M. bovis infection and humans get exposed to M. bovis through close contact with infected animals or consumption of contaminated milk, unpasteurized dairy products and improperly cooked contaminated meat. The information on the global distribution of bovine TB (bTB) is limited, but the disease has been reported from all the livestock-producing middle- and low-income countries of the world. In recent years, there is a renewed interest for the control of bTB to minimize human infection worldwide. In India, while the sporadic presence of M. bovis has been reported in domestic animals, animal-derived food products and human beings from different geographical regions of the country, the information on the national prevalence of bTB and transmission dynamics of zoonotic TB is, however, not available. The present article reviewed published information on the status of M. bovis-induced zoonotic TB to highlight the key challenges and opportunities for intervention to minimize the risk of M. bovis infection in humans and secure optimum animal productivity in India.
RÉSUMÉ
Background & objectives: The immune responses to different antigens of Mycobacterium tuberculosis H37Rv vary from patient to patient with tuberculosis (TB). Therefore, significant difference might be documented between the H37Rv with long histories of passages and recent clinical isolates of M. tuberculosis. In the present study, immune response of TB patients and healthy controls against 39 clinical M. tuberculosis isolates was correlated with laboratory strain H37Rv. Methods: The antibody response was studied coating whole cell extracts and culture filtrate proteins of M. tuberculosis isolates and laboratory strain H37Rv by enzyme linked immunosorbent assay (ELISA). Lymphoproliferation was studied by incorporation of tritiated thymidine and cytokines (IFN-γ and IL-4) by using commercially available kits. Results: Sero-reactivity to whole cell extract (WCE) of 11 clinical isolates was higher with pooled serum and individual's serum from tuberculosis patients showed significant reactivity (P<0.05) to ten of these isolates using ELISA. Of the WCE of 39 clinical isolates, 10 were found to be potent inducer of lymphoproliferation as well as cytokine secretion (P<0.05) in peripheral blood mononuclear cells from PPD+ healthy controls. Six culture filtrate proteins (CFPs) from these selected clinical isolates were also better inducers of antibody and T-cell response. Interpretation & conclusion: Overall, our results revealed that the clinical isolates belonging to prevalent genotypes; CAS1_Del (ST-26), East African-Indian (ST-11) and Beijing family (ST-1) induced better antibody and T cell responses compared to H37Rv laboratory strain. Further studies need to be done to purify and identify the dominant protein (s) using whole cell extract and culture filtrates from these immunologically relevant clinical M. tuberculosis isolates, which will be worthwhile to find out pathogenic factors, potential diagnostic markers and protective molecules for tuberculosis.