RÉSUMÉ
Background & Objective: SCN1A gene which encodes for sodium channel alpha 1 subunit has been found to be the most common mutated gene in patients with epilepsy. This study aims to characterize the SCN1A mutations as well as to describe genotype and phenotype association in children with SCN1Arelated infantile-onset epileptic encephalopathies in Malaysia. Methods: Children with infantile-onset epileptic encephalopathy mostly suspected to have Dravet syndrome who had mutational analysis for SCN1A gene from hospitals all over Malaysia were included in the study. Their epilepsy syndrome diagnosis was classified into severe myoclonic epilepsy in infancy and its variants. Polymerase chain reaction and bidirectional sequencing were used to identify SCN1A mutations. Results: A total of 38 children with heterozygous mutations were analysed, 22 (57.9%) of which were novel mutations. Truncated mutations were the most common mutation type (19, 50%). Other mutation types were missense mutations (14, 36.8%), splice site mutations (4, 10.5%) and in-frame deletion (1, 2.6%). The mean age of seizure onset was 4.7 months. Seizure following vaccination was observed in 26.3% of the children. All of them had drug resistant epilepsy. There was no significant association between the type of mutation with the syndromic diagnosis, age of seizure onset, tendency of the seizures to cluster or having status epilepticus, mean age when developmental delay was observed and response to various antiepileptic drugs. Conclusion: This study expands the spectrum of SCN1A mutations and proves the importance of SCN1A gene testing in diagnosing infantile-onset epileptic encephalopathies patients. Although, our study does not support any clinically meaningful genotype-phenotype association for SCN1A-related infantile-onset epileptic encephalopathies, the clinical characteristics of our cohort are similar to those that have been described in previous studies.
RÉSUMÉ
Fragile X syndrome (FXS) is a neurodevelopmental disorder commonly found worldwide, caused by the silencing of fragile X mental retardation 1 (FMR1) gene on the X-chromosome. Most of the patients lost FMR1 function due to an expansion of cytosine-guanine-guanine (CGG) repeat at the 5’ untranslated region (5’UTR) of the gene. The purpose of this study is to identify the prevalence of FXS and characterize the FMR1 gene CGG repeats distribution among children with developmental disability in Malaysia. Genomic DNA of 2201 samples from different ethnicities (Malays, Chinese, Indian and others) of both genders were PCR-amplified from peripheral blood leukocytes based on specific primers at 5’UTR of FMR1 gene. Full mutations and mosaics were successfully identified by triple methylation specific PCR (ms-PCR) and subsequently verified with FragilEase kit. The findings revealed for the first time the prevalence of FXS full mutation in children with developmental disability in Malaysia was 3.5%, a slightly higher figure as compared to other countries. Molecular investigation also identified 0.2% and 0.4% probands have permutation and intermediate alleles, respectively. The CGG repeats length observation showed 95% of patients had normal alleles within 11 to 44 CGG repeats; with 29 repeats found most common among Malays and Indians while 28 repeats were most common among Chinese. In conclusion, this is the first report of prevalence and characterisation of CGG repeats that reflects genetic variability among Malaysian ethnic grouping.
RÉSUMÉ
Adult-onset metachromatic leukodystrophy is often a diagnostic challenge to many clinicians. It may be presented with psychiatry symptom before other evidences of leukodystrophy are uncovered. We report a 53-year-old patient who presented with 7-year history of manic-like presentation in addition to progressive neurocognitive deterioration. Diagnosis was made eventually with neuroimaging. Mutational analysis showed compound heterozygous of ARSA gene. This case demonstrated the challenge in diagnosing this condition due to its complex neuropsychiatric presentation.
Sujet(s)
Leucodystrophie métachromatiqueRÉSUMÉ
Lysinuric protein intolerance (LPI) is an inborn error of dibasic amino acid transport due to a defect in the dibasic amino acid transporter in the renal and intestine and has a heterogenous presentation. Three Malaysian patients with LPI were studied and their biochemical and molecular findings compared. There were differences and similarities in the biochemical and molecular findings. Molecular analysis of SLC7A7 gene revealed a novel mutation c.235G>A; p.(Gly79Arg) in exon three in Patient 1 and a mutation c.1417C>T; p.(Arg473*) in exon 10 in patient 2 and 3. The degree of concentration of dibasic amino acids may determine the type of disease of the cell membrane transport, however, a positive molecular confirmation will secure the diagnosis.