Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
1.
Braz. j. med. biol. res ; 54(4): e10498, 2021. graf
Article Dans Anglais | LILACS | ID: biblio-1153543

Résumé

It is known that neuronal apoptosis contributes to pathology of cerebral ischemia injury. Zonisamide (ZNS) has shown anti-apoptosis effects in recent studies. The present study investigated whether the anti-apoptotic effect can account for the neuroprotective action of ZNS on cerebral ischemia. Neuronal cells were maintained under oxygen-glucose deprivation conditions to simulate cerebral ischemia and treated with ZNS simultaneously. The apoptosis of the cells and expression of apoptosis-related proteins were investigated by flow cytometry and western blot analysis, respectively. A cerebral ischemia mouse model was created via middle cerebral artery occlusion, and the mice were treated with ZNS. Neurological deficit scores and infarct volumes of the cerebral ischemia mice were measured. The apoptosis status of the neuronal cells was evaluated by TUNEL staining. In vitro, the ZNS treatment inhibited both the apoptosis of the neuronal cells and apoptosis-related protein expression (caspase-3, caspase-8, and calpain-1) induced by the oxygen-glucose deprivation. The anti-apoptosis effect of ZNS could occur through the blocking of reactive oxygen species. Moreover, ZNS treatment significantly ameliorated neurological deficits and reduced infarct volumes in the cerebral ischemia mice model. In this study, ZNS exerted neuroprotective effects by inhibition of apoptosis in neuronal cells in cerebral ischemia. Therefore, ZNS might be a promising therapy for cerebral ischemia.


Sujets)
Animaux , Rats , Lésion d'ischémie-reperfusion , Encéphalopathie ischémique/traitement médicamenteux , Neuroprotecteurs/pharmacologie , Apoptose , Infarctus du territoire de l'artère cérébrale moyenne/traitement médicamenteux , Zonisamide/pharmacologie
2.
Neurol India ; 2006 Dec; 54(4): 402-7
Article Dans Anglais | IMSEAR | ID: sea-120411

Résumé

BACKGROUND: Intracerebral hemorrhage (ICH) results in secondary brain edema and injury that may lead to death and disability. ICH also causes inflammation. It is unclear whether inflammation contributes to brain edema and neuron injury or functions in repairing the brain tissue. AIMS: To understand the effect of inflammation in ICH, we have carried out an investigation on the various aspects and the dynamic changes of inflammation. SETTINGS AND DESIGN: An ICH model was generated by injecting 50 microl autologous tail artery blood stereotactically into the right caudate nucleus of 30 rats, which were randomly divided into five ICH groups. Similarly, five Sham control groups were generated by inserting the needle to the right caudate nucleus of rats. MATERIALS AND METHODS: Rat behavior was evaluated over the time course (6 h, 24 h, 48 h, 72 h and 7 d) in each group. The rats were then killed by administering an overdose of pentobarbital. Following the euthanasia, the brain water content, neuronal loss, glia proliferation, inflammatory infiltration and brain morphology of the rats were measured. Additionally, the expression of TNF-alpha, IL-6, ICAM-1, VEGF, NF-kappaB, C3 and CR2 was analyzed by immunohistochemistry. STATISTICAL ANALYSIS: The data were analyzed by student's t test. RESULTS: Rat brain water content increased progressively over the time course and reached its peak at 48 h followed ICH. The maximum of inflammatory infiltrate (especially neutrophils) and immunopositive cells of TNF-alpha, IL-6 and NF-kappaB, were at 48 h. The expression of C3 and CR2 reached their peaks at 48-72 h, while the expression ICAM-1 and VEGF were at maximum at 72 h followed ICH. CONCLUSIONS: The results suggested that the inflammatory cytokines, complement system and VEGF may have a function in the development of the brain edema and neuron injury followed ICH.


Sujets)
Animaux , Oedème cérébral/étiologie , Hémorragie cérébrale/complications , Complément C3/biosynthèse , Inflammation , Médiateurs de l'inflammation/métabolisme , Molécule-1 d'adhérence intercellulaire/biosynthèse , Interleukine-6/biosynthèse , Mâle , Modèles animaux , Facteur de transcription NF-kappa B/biosynthèse , Rats , Rat Sprague-Dawley , Récepteurs au C3d du complément/biosynthèse , Facteur de nécrose tumorale alpha/biosynthèse , Facteur de croissance endothéliale vasculaire de type A/biosynthèse
SÉLECTION CITATIONS
Détails de la recherche