Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 518
Filtrer
1.
Article de Chinois | WPRIM | ID: wpr-1006380

RÉSUMÉ

@#Epigenetic modification plays an important role in the biological regulatory process of eukaryotic cells. Tumor immunotherapy is an important means and clinical strategy for the treatment of some cancers. 5-Methylcytosine (m5C) is an important component of the epigenetic regulatory network discovered after m6A and has become a new topic for life science research in recent years. The m5C methylation of RNA can affect the fate of the modified RNA molecules and play an important role in various biological processes, including RNA stability, protein synthesis and transcriptional regulation. Recent studies have shown that m5C writers, erasers and readers are related to a variety of cellular biological processes and systemic diseases, including the occurrence, metastasis and tumor immune microenvironment. m5C methylation can widely affect gene expression and the biological process of tumorigenesis and development at multiple levels, but its specific mechanism and potential interaction with other epigenetic modifications in tumor immunotherapy are still unclear, and its regulatory mechanism, risk assessment and role in targeted therapy for malignant tumors need to be further studied. This article will review the dynamic regulatory network of m5C, the biological role of m5C modification in solid tumors and potential targets in tumor immunotherapy.

2.
Article de Chinois | WPRIM | ID: wpr-1017108

RÉSUMÉ

@#C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 are closely related to tumorigenesis and tumor progression. The CCL2/CCR2 signaling axis promotes tumor progression through multiple mechanisms: CCL2 binds to CCR2 on the surface of tumor cells, and thus promotes tumor growth/survival and metastasis; more importantly, CCL2 recruits a variety of immunosuppressive cells to aggregate in the tumor microenvironment, and inhibits the function and activity of immune cells, promoting tumor progression. The article reviews the CCL2/CCR2 signaling axis and its role in tumors and tumor microenvironment, with particular focus on the advances in clinical research on drugs targeting CCL2/CCR2 signaling axis, in order to gain an in-depth and overall understanding of the mechanism of action of CCL2/CCR2 axis in tumor progression and develop more effective anti-tumor immunotherapeutic agents.

3.
Article de Chinois | WPRIM | ID: wpr-1017187

RÉSUMÉ

Tumor cells use glycolysis to provide material and energy under hypoxic conditions to meet the energy requirements for rapid growth and proliferation, namely the Warburg effect. Even under aerobic conditions, tumor cells mainly rely on glycolysis to provide energy. Therefore, glucose transporter protein 1(GLUT1), which is involved in the process of glucose metabolism, plays an important role in tumorigenesis, development and drug resistance, and is considered to be one of the important targets in the treatment of malignant tumors. In recent years, research on tumor glucose metabolism has gradually become a hot spot. It has been shown that various factors are involved in the regulation of tumor energy metabolism, among which the role of GLUT1 is the most critical. In this paper, the authors reviewed the latest research progress of GLUT1-targeted traditional Chinese medicine(TCM) active ingredient nano-delivery system in tumor therapy, aiming to reveal the feasibility and effectiveness of this system in the delivery of chemotherapeutic drugs. The GLUT1-targeted TCM active ingredient nano-delivery system can overcome the bottleneck of the traditional targeting strategy as well as the high-permeability long retention(EPR) effect. In summary, the authors believe that the GLUT1-targeted TCM active ingredient nano-delivery system provides a new strategy for targeted treatment of tumors and has a broad application prospect in tumor prevention and treatment.

4.
Article de Chinois | WPRIM | ID: wpr-1018173

RÉSUMÉ

As a kind of immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are an important component of the immune microenvironment. MDSCs play a significant role in promoting tumor immune escape. In addition, non-immunological functions such as promoting angiogenesis can also promote tumor development with the deepening of research. MDSCs can promote tumor angiogenesis directly through vascular endothelial growth factor signaling pathway, or promote tumor growth and angiogenesis by secreting cytokines such as matrix metalloprotein-9, basic fibroblast growth factor, angiogenic peptide Bv8, platelet derived growth factor, exosomes, or interacting with other cells. Exploring the expansion, activation, recruitment and angiogenesis mechanism of MDSCs will provide new ideas for regulating the individualized diagnosis and treatment based on targeted MDSCs.

5.
Article de Chinois | WPRIM | ID: wpr-1018174

RÉSUMÉ

In recent years, studies have found that breast microbiota differs between breast cancer tissue and normal breast tissue. Breast microbiota is closely related to the occurrence and development of breast cancer, and its mechanism includes affecting estrogen levels, lipid metabolism, immune regulation, and inflammatory response. Adjusting diet, rational use of antibiotics and oral probiotics can regulate breast microbiota, which is a new direction for the prevention and treatment of breast cancer.

6.
Article de Chinois | WPRIM | ID: wpr-1020567

RÉSUMÉ

Objective:To investigate the impact of BMI1 expression in OSCC on the recruitment and differentiation of tumor-associat-ed macrophages(TAMs).Methods:BMI1 expression in 519 cases of OSCC tissues and 44 normal controls was analyzed using online datasets of GEPIA 2.0,and validated in 3 cases of OSCC samples and controls by qRT-PCR and western blotting.The function of BMI1/NF-κB axis during OSCC carcinogenesis was investigated by CCK8 assays,wound healing test and transwell assays.Macrophage phenotypes and recruitment were determined using qRT-PCR and western blotting following coculture of the cells with human monocyte cells(THP-1)by OSCC conditioned medium.Moreover,a cell line-derived xenograft(CDX)model was used to detect the effect of BMI1 on tumor growth in vivo.Results:Compared with the normal tissues and cells,the expression level of BMI1 in OSCC tissues and cells was significantly upregulated.BMI1 knockdown impaired the proliferation,migration,and invasion abilities of OSCC cell lines in NF-κB-dependent manner.Furthermore,OSCC cells with high BMI1 expression inhibited the migration of THP-1 cells,promoted M2-like macrophage polarization through NF-κB pathway in vitro.Xenograft experiments further confirmed the inhibitory effect of BMI1 knockdown on the tumorigenesis ability of OSCC cells in vivo.Conclusion:BMI1 promotes M2-like polarization by regulating NF-κB and may be used as a potential therapeutic target for antitumor immunity.

7.
Tianjin Medical Journal ; (12): 28-32, 2024.
Article de Chinois | WPRIM | ID: wpr-1020965

RÉSUMÉ

Organoids are the three-dimensional culture of adult stem cells or pluripotent stem cells in vitro to form tissue analogs with specific structures,which have highly similar tissue properties and physiological functions to the corresponding organs.The emergence of organoid technology has laid an important foundation for research in organ development,disease modeling and drug discovery.Tumor organoid,as an important branch of organoids,is a transition between cell lines and animal models,which can well retain the histological and mutational characteristics of tumors in patients and play an essential role in building tumor organoid sample libraries,reconstructing tumor microenvironment,studying the tumor development mechanism as well as formulating personalized treatment plans and drug screening.Tumor organoids help clinicians to realize precise treatment for patients.However,some factors still limit the further development of tumor organoids,such as the lack of microenvironmental components,vascular structure,high culture cost and technical difficulties.In this review,we summarize the applications and challenges of organoid technology in basic tumor research and clinical translation and look forward to the future development of tumor organoids.

8.
Article de Chinois | WPRIM | ID: wpr-1021205

RÉSUMÉ

BACKGROUND:In recent years,many studies have confirmed that assembloids can make up for the shortcomings of organoids,which cannot fully reproduce the interaction between cell and cell and between cell and matrix.Since the assembloids construction methods are in the early stage of development,there is no unified standard. OBJECTIVE:To review the current construction methods,applications,advantages,and disadvantages of assembloids,guide the development and improvement of vitro cell models. METHODS:PubMed,CNKI,and WanFang databases were searched with English search terms"assembloids,organoids,tumor microenvironment,organoids AND assemble,organoids AND microenvironment"and Chinese search terms"assembloids,organoids,tumor microenvironment,organoid reorganization,multicellular model".Totally 94 articles were screened out for review after excluding irrelevant articles and deduplication. RESULTS AND CONCLUSION:(1)According to the different sources of cells,the construction of assembloids can be divided into three methods:self-assembly,direct-assembly,and mixed-assembly.According to the differences of cell culture methods,it can be divided into suspension culture method,matrix culture method,organ chip culture method,and 3D bio-printing.(2)The process of self-assembly covers early stages of cell and tissue development,so it has broad prospects in the fields of organ development and developmental disorders.The function of differentiated mature cells is relatively perfect,and the assembloids directly assembled by them have more potential in the study of functional disorders and cell-damaging diseases.Self-assembly may be better in organ transplantation,and direct-assembly will be more suitable for the repair of tissue damage.Mixed-assembly combines the advantages of the former two and is mostly used to explore the physiological and pathological mechanisms of cells in the microenvironment,as well as drug screening.(3)Although different assembloids have their own advantages,they all face the problem of imperfect vasculature system,then,each method has its own limitations,for example,the degree of cell differentiation in self-assembly assembloids may still be different from that in vivo,and the fixed cell types in direct-assembly models cannot simulate complex microenvironments in vivo.These are urgent problems to be solved.(4)In the future,with the continuous improvement of assembloids culture technology,scientists can assemble biomimetic organoids with more complex tissues in vitro,providing infinitely realistic models for the study of physiological and pathological processes of human tissue and organ.

9.
Article de Chinois | WPRIM | ID: wpr-1029539

RÉSUMÉ

Tumor-associated macrophages (TAMs) are the predominant immune cells in the tumor microenvironment (TME). They have been shown to play an important immunosuppressive role in the development of TME and promote tumor immune escape, growth and metastasis. It is a current research hotspot to regulate the functional polarization of TAMs through trained immunity (metabolic reprogramming, epigenetic remodeling) to affect the occurrence and development of tumors. Therefore, in-depth research in this field not only presents a more comprehensive perspective on the pathogenesis of immune-mediated diseases, but also can provide new strategies for clinical anti-tumor immunotherapy. This paper outlines the origin of TAMs and the phenotypes and mechanisms of TAMs polarization, discusses the mechanisms by which metabolic reprogramming and epigenetic remodeling regulate TAMs, summarizes the regulation of TAMs activation and polarization by them, and provides an overview of the progress in TAMs at the current stage of clinical practice, hoping to provide reference for the development of new immunoprevention and treatment strategies.

10.
Article de Chinois | WPRIM | ID: wpr-1030957

RÉSUMÉ

Tumor metastasis is the major cause of death for tumor patients and the key bottleneck of clinical treatment. In recent years, basic and clinical studies have recognized that tumor microenvironment (TME) is highly correlated with tumor metastasis, which provides hope for anti-metastatic drug development and clinical treatment. At present, the mainstream studies on TME represented by immune checkpoint inhibitors (ICIs) mainly focus on the rectification of immune function of T cells and B cells. However, a large number of studies have shown that the significance of other members of TME for tumor metastasis cannot be ignored, which greatly reflects the progress of anti-metastatic research based on TME regulation. This review focused on tumor metastasis, summarized the mechanism of action of non-T and non-B immune cells [tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs)] and non-immune members [vascular endothelial cells (ECs), tumor-associated fibroblasts (CAFs), and blood platelet] in the process of tumor metastasis in TME based on the literature over the recent five years, and explored their key value in the treatment of metastasis. At the treatment level, this review focused on the perspective of the integration of frontier and traditional methods and took the functional homeostasis remodeling of TME as the entry point to summarize the activity and mechanism of traditional Chinese medicine (TCM) regulation of non-T and non-B immune cells and non-immune members and highlight its advantages and characteristics in clinical intervention of metastasis. This review helps to break through the limitations of over-reliance on T and B immune cells in anti-metastatic research, make the research rely on a wider range of cell groups, explore the potential value of TME in anti-metastatic drug intervention, and enrich the idea and strategy of understanding the anti-metastatic pharmacological activity. The review is also expected to provide a broader vision for the research and development of new anti-metastatic drugs.

11.
Journal of Modern Urology ; (12): 46-50, 2024.
Article de Chinois | WPRIM | ID: wpr-1031568

RÉSUMÉ

【Objective】 To analyze the association between copper death-related genes and prognosis of prostate cancer and immune cell infiltration based on the cancer genome atlas (TCGA). 【Methods】 The mRNA transcriptome data of all prostate cancer patients were downloaded from TCGA, including 501 prostate cancer tissues and 52 normal tissues.The expression matrix of copper death-related genes was extracted with R software.Differential analysis and multivariate regression analysis were conducted to screen out the prognostic genes, which were then analyzed to explore the correlation between prognosis-related genes and immune cells. 【Results】 GCSH gene was significantly correlated with the prognosis of prostate cancer, and significantly correlated with dendritic cells, CD8+ T cells and plasma cells (P<0.05). 【Conclusion】 GCSH gene plays an important role in the occurrence and development of prostate cancer, and may become a prognostic marker of the disease.

12.
Journal of Modern Urology ; (12): 83-88, 2024.
Article de Chinois | WPRIM | ID: wpr-1031574

RÉSUMÉ

The prostate is surrounded by adipose tissue called periprostatic adipose tissue (PPAT).This article reviews the correlation between PPAT and prostate cancer, the boundaries and methods of PPAT measurement, and the role of PPAT in prostate tumor microenvironment, so as to provide new treatment strategies and risk stratification factors for prostate cancer.

13.
Journal of Modern Urology ; (12): 187-191, 2024.
Article de Chinois | WPRIM | ID: wpr-1031678

RÉSUMÉ

Prostate cancer (PCa) is one of the most common tumors in men.In recent years, various researches on this disease and clinical applications have benefited patients.Exosome is a subclass of extracellular vesicles (EVs).Many studies have explored the mechanisms of exosome in mediating epithelial mesenchymal transformation, angiogenesis, tumor microenvironment establishment, immune escape and drug resistance acquisition in PCa, which provides a new perspective for finding new diagnostic markers.This article reviews the role of exosome in the pathogenesis of PCa and its diagnostic application.

14.
China Pharmacy ; (12): 1408-1412, 2024.
Article de Chinois | WPRIM | ID: wpr-1031722

RÉSUMÉ

Breast cancer (BC) ranks first in the incidence rate of female malignant tumor, the notable features of which include high invasive behavior, high malignant degree and poor prognosis. Resveratrol, a plant antioxidant, has been identified as a potential therapeutic agent for the occurrence and progress of BC. This article explores the mechanism of resveratrol intervention in BC by evaluating several in vitro and in vivo studies. It was found that resveratrol can weaken the proliferation and survival ability of BC cells, suppress their growth, metastasis, and invasion, and reverse their resistance to adriamycin by promoting cell apoptosis, regulating autophagy, inhibiting glycolysis and regulating the tumor microenvironment, expressions of matrix metalloproteinases, epithelial-mesenchymal transition and drug-resistant proteins, etc. The limited number of clinical trial studies on resveratrol, mainly focusing on prevention effect of it on breast cancer, may be one of the reasons that affect the comprehensive evaluation of the anti-cancer efficacy of resveratrol.

15.
China Pharmacy ; (12): 1408-1412, 2024.
Article de Chinois | WPRIM | ID: wpr-1031744

RÉSUMÉ

Breast cancer (BC) ranks first in the incidence rate of female malignant tumor, the notable features of which include high invasive behavior, high malignant degree and poor prognosis. Resveratrol, a plant antioxidant, has been identified as a potential therapeutic agent for the occurrence and progress of BC. This article explores the mechanism of resveratrol intervention in BC by evaluating several in vitro and in vivo studies. It was found that resveratrol can weaken the proliferation and survival ability of BC cells, suppress their growth, metastasis, and invasion, and reverse their resistance to adriamycin by promoting cell apoptosis, regulating autophagy, inhibiting glycolysis and regulating the tumor microenvironment, expressions of matrix metalloproteinases, epithelial-mesenchymal transition and drug-resistant proteins, etc. The limited number of clinical trial studies on resveratrol, mainly focusing on prevention effect of it on breast cancer, may be one of the reasons that affect the comprehensive evaluation of the anti-cancer efficacy of resveratrol.

16.
Article de Chinois | WPRIM | ID: wpr-1032180

RÉSUMÉ

Inflammatory markers in peripheral blood, such as neutrophil-lymphocyte ratio and platelet-lymphocyte ratio, can reflect the reactive hyperplasia of inflammatory cells in tumors. The metabolic parameters of 18F-FDG PET/CT are also correlated with the reactive hyperplasia of inflammatory cells in tumors. However, only a few reports exist on the relationship between tumor metabolic parameters and peripheral blood inflammatory markers. Therefore, this review starts from three aspects: tumor peripheral blood inflammatory markers, inflammatory cell reactive hyperplasia in tumors, and 18F-FDG PET/CT metabolic parameters. The correlation between 18F-FDG PET/CT metabolic parameters and peripheral blood inflammatory markers is reviewed.

17.
Article de Chinois | WPRIM | ID: wpr-1016499

RÉSUMÉ

@#Hypoxia is the most common tumor microenvironment caused by rapid proliferation of tumor cells, and hypoxia-inducible factor (HIF) is the main transcription factor for tumor cells to adapt to hypoxia. Current research has found that HIF can interact with a variety of mesenchymal cells such as fibroblasts, endothelial cells and immune cells in the tumor microenvironment, leading to the transcription and expression of target genes in response to hypoxia, which ultimately promotes tumor angiogenesis, and induces physiological changes such as migration, invasion, and immune escape of tumor cells. However, the signaling pathways involved in the HIF regulatory mechanism are complex, and the mechanism of HIF in the tumor microenvironment need to be further investigated, also most HIF inhibitors are still in the preclinical research stage. This paper reviews the research progress on the effects of HIF on tumor mesenchymal stromal cells to provide a theoretical basis for the diagnosis, prevention and treatment of tumors targeting HIF.

18.
Journal of Clinical Hepatology ; (12): 822-827, 2024.
Article de Chinois | WPRIM | ID: wpr-1016531

RÉSUMÉ

The Hedgehog (Hh) signaling pathway plays an important role in the development and progression of hepatocellular carcinoma and its tumor microenvironment, and abnormal activation of Hh signal can accelerate the growth of tumor. The crosstalk between the Hh signaling pathway and TME is closely associated with tumor growth and the formation of inhibitory tumor microenvironment. Evidence shows that inhibition of Hh signal plays an important role in inhibiting the growth of hepatocellular carcinoma. This article reviews the current research status of the role, mechanism, and potential therapeutic significance of abnormal activation of Hh signal in hepatocellular carcinoma and its tumor microenvironment, so as to provide new ideas for the treatment of hepatocellular carcinoma.

19.
Acta Pharmaceutica Sinica B ; (6): 821-835, 2024.
Article de Anglais | WPRIM | ID: wpr-1011256

RÉSUMÉ

Radiotherapy (RT) can potentially induce systemic immune responses by initiating immunogenic cell death (ICD) of tumor cells. However, RT-induced antitumor immunologic responses are sporadic and insufficient against cancer metastases. Herein, we construct multifunctional self-sufficient nanoparticles (MARS) with dual-enzyme activity (GOx and peroxidase-like) to trigger radical storms and activate the cascade-amplified systemic immune responses to suppress both local tumors and metastatic relapse. In addition to limiting the Warburg effect to actualize starvation therapy, MARS catalyzes glucose to produce hydrogen peroxide (H2O2), which is then used in the Cu+-mediated Fenton-like reaction and RT sensitization. RT and chemodynamic therapy produce reactive oxygen species in the form of radical storms, which have a robust ICD impact on mobilizing the immune system. Thus, when MARS is combined with RT, potent systemic antitumor immunity can be generated by activating antigen-presenting cells, promoting dendritic cells maturation, increasing the infiltration of cytotoxic T lymphocytes, and reprogramming the immunosuppressive tumor microenvironment. Furthermore, the synergistic therapy of RT and MARS effectively suppresses local tumor growth, increases mouse longevity, and results in a 90% reduction in lung metastasis and postoperative recurrence. Overall, we provide a viable approach to treating cancer by inducing radical storms and activating cascade-amplified systemic immunity.

20.
Acta Pharmaceutica Sinica B ; (6): 854-868, 2024.
Article de Anglais | WPRIM | ID: wpr-1011257

RÉSUMÉ

Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE