Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.724
Filtrer
1.
Braz. j. med. biol. res ; 57: e13235, fev.2024. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1550145

RÉSUMÉ

Abstract The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1β, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.

2.
Braz. j. med. biol. res ; 57: e13809, fev.2024. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1568979

RÉSUMÉ

Small nucleolar RNAs (snoRNAs) have robust potential functions and therapeutic value in breast cancer. Herein, we investigated the role SNORA5A in breast cancer. Samples from The Cancer Genome Atlas (TCGA) were reviewed. The transcription matrix and clinical information were analyzed using R software and validated in clinical tissue samples. SNORA5A was significantly down-regulated in breast cancer, and high expression of SNORA5A correlated with a favorable prognosis. High expression of SNORA5A induced a high concentration of tumor-associated macrophages M1 and a low concentration of tumor-associated macrophages M2. Moreover, SNORA5A were clustered in terms related to cancer and immune functions. Possible downstream molecules of SNORA5A were identified, among which TRAF3IP3 was positively correlated with M1 and negatively correlated with M2. The function of TRAF3IP3 in tumor inhibition and its relationship with macrophages in clinical tissue samples were in accordance with bioinformatics analysis results. SNORA5A could regulate macrophage phenotypes through TRAF3IP3 and serves as a potential prognostic marker for breast cancer patients.

3.
Basic & Clinical Medicine ; (12): 204-209, 2024.
Article de Chinois | WPRIM | ID: wpr-1018596

RÉSUMÉ

Objective To determine whether four-and-a-half LIM-only protein 2(FHL2)can affect macrophage foa-ming by regulating nuclear factor kappa-B(NF-κB)signaling pathway.Methods FHL2 over-expression plasmids and siRNA of FHL2 were constructed and transfected into human monocyte/macrophages cell line THP-1.Western blot was used to detect the expression of FHL2.The cells were stimulated with oxidized low density lipoprotein(ox-LDL)and the expression of IL-6,IL-1β,TNF-α and other cytokines were detected by ELISA.Oil red O staining was used to detect the degree of cell foaming.The protein expression of NF-κB signaling pathway was detected by Western blot.Results The expression of FHL2 increased after transfected with FHL2 over-expression plasmids while decreased in si-FLH2 transfected cells.FHL2 down-regulated secretion of inflammatory cytokines.Down-regulation of FHL2 allevi-ated THP-1 macrophage foaming.The down-regulation of FHL2 inhibited activation of NF-κB signaling pathway,while the over-expression FHL2 showed an opposite trend.Conclusions FHL2 down-regulation inhibits the activation of NF-κB signaling pathway,reduces the secretion of inflammatory cytokines and alleviates foaming of macrophages.

4.
Basic & Clinical Medicine ; (12): 281-287, 2024.
Article de Chinois | WPRIM | ID: wpr-1018610

RÉSUMÉ

Objective To explore the impact of macrophage-to-myofibroblast transition(MMT)on pulmonary fibro-sis induced by acute lung injury by LPS.Methods Totally 21 male mice were randomly classified into 7 groups:control group,model group(LPS-PF)at different time points and intervention group of clodronate-liposomes(CL-LIP)treatement at different time points(n=3).Pulmonary fibrosis was identified by HE and Masson staining microscopy.The immuno-fluorescence technology was used for the evaluation of numbers of macrophage-to-myofi-broblast transition cells(MMT cell which co-expressed CD68 and α-SMA).Bone marrow-derived macrophages(BMDMs)were randomly classified into two group:control(Ctrl)group and TGF-β1-treated group induced by transforming growthfactor-β1.α-SMA,FN and Col1 were detected by RT-qPCR.The expression of α-SMA,Smad3 and p-Smad3 protein was evaluated by Western blot.Results At day 7,the Ashcroft score of lung tissue in LPS-PF mouse model was significantly increased when compared with the Ctrl group(P<0.01);While the score signifi-cantly declined when the model was pretreated with CL-LIP(P<0.05).As detected by immuno-fluorescence stai-ning,in CL-LIP group the number of CD68-positive cells co-labeled with α-SMA was obviously less then that of LPS-PF group of the corresponding time point(P<0.01).When the BMDMs were stimulated by TGF-β1 at 24 h,48 h and 96 h respectively,a higher expression of α-SMA,FN,Col1,were found in TGF-β1-treated group than that in Ctrl group at the corresponding time point(P<0.01).The expression of Smad3,p-Smad3 significantly higher in LPS-PF group(at both day 7 and day 10)and TGF-β1-treated group(at both 48 h and 96 h)as compared to cor-responding control group(P<0.01).Conclusions MMT promotes pulmonary fibrosis induced by ALI via LPS.Smad3 is proved to be involved in the MMT process.

5.
Basic & Clinical Medicine ; (12): 368-373, 2024.
Article de Chinois | WPRIM | ID: wpr-1018622

RÉSUMÉ

Objective To investigate the role of triggering receptor expressed on myeloid cells-1(TREM-1)in ath-erosclerosis induced by chronic intermittent hypoxia(CIH).Methods ApoE-/-mice were randomly divided into blank group,model group and experimental group.The mice in the model group and the experimental group were kept in a hypoxic environment and fed with a high-fat diet.After 4 weeks of high-fat feeding,mice in the experi-mental group were intraperitoneally injected with TREM-1 inhibitor LR12(5 mg/kg)for 8 weeks.After 12 weeks of feeding,the level of serum total cholesterol(TC),low density lipoprotein(LDL),triglyceride(TG),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β)and interleukin-10(IL-10)were detected.Histological analysis of aortic TREM-1 expression,plaque area and macrophage level were examined.Results Compared with blank group,the expression of TREM-1 in the aorta of the model group significantly increased(P<0.05).Com-pared with model group,the aortic plaque,the level of lipids in serum(TC,LDL,TG)and inflammatory factors(TNF-α,IL-1β,IL-10),aortic plaque,the expression of TREM-1 and infiltrating macrophages in aortic plaque of the experimental group were all significantly reduced(P<0.05).Conclusions TREM-1 is involved in the develop-ment of CIH-induced AS.Inhibition of TREM-1 can alleviate CIH-induced AS and its mechanism is related to the inhibition of macrophage activation.

6.
Article de Chinois | WPRIM | ID: wpr-1018730

RÉSUMÉ

Objective To investigate the role of pulmonary neuroendocrine cells(PNEC)and γ-aminobutyric acid(GABA)in patients with pulmonary neuroendocrine tumors(PNET).Methods The pathological specimens of 29 cases of PNET treated in the eighth Medical Center of Chinese PLA General Hospital from October 2018 to January 2022 were collected.The morphological characteristics were observed by HE staining,and the expression levels of synaptophysin(Syn),chromogranin A(CgA),CD56,Ki-67,CD86 and CD163 were observed by immunohistochemical staining.Calcitonin gene-related peptide(CGRP)and glutamic acid decarboxylase(GAD)65/67 in different types of PNETs were detected by double antibody immunofluorescence co-staining,and the correlation between GAD65/67 positive PNEC and macrophage polarization was analyzed.Results The results of HE staining showed that all four types of PNET tissues had neuroendocrine(NE)characteristics:rosette structure and organ nesting or palisade pattern,but they were different,and the proportion of mitotic cells from low to high was typical carcinoid(TC),atypical carcinoid(AC),large cell neuroendocrine carcinoma(LCNEC)and small cell lung cancer(SCLC).The results of immunohistochemical staining showed that the positive expression rate of Syn and CgA and the positive degree of Syn,CgA and CD56 in carcinoid(TC and AC)were significantly higher than those in LCNEC and SCLC(P<0.05).The Ki-67 indices of the four types of PNET are:TC<5%,AC 5%-20%,LCNEC and SCLC>75%respectively.The number of PNEC in carcinoid was significantly higher than that in LCNEC,SCLC and paratumoral tissues(P<0.05),but there was no significant difference in the number of PNEC between LCNEC and SCLC and para-tumor tissues(P>0.05).The results of immunofluorescence staining showed that the number of GAD65/67 positive cells co-expressing GAD65/67 in 95%PNEC was significantly higher than that in LCNEC,SCLC and para-tumor tissues(P<0.05),but there was no significant difference between LCNEC and SCLC GAD65/67 positive cells and para-tumor tissues(P>0.05).The results of immunohistochemical staining also showed that the number of CD86 positive M1 macrophages was significantly higher than that of CD163 positive M2 macrophages in para-tumor tissues(P<0.05),while M2 macrophages were significantly more than M1 macrophages in AC,LCNEC and SCLC(P<0.01).Correlation analysis showed that the number of GAD65/67 positive PNEC cells in PNET was negatively correlated with the number of CD163 positive M2 macrophages in tumor stroma(r=-0.6336,P=0.0174).Conclusions PNEC is the main source of GABA in lung tissue and plays an immunomodulatory role in the lung,which may be involved in the progression of PNET.

7.
Article de Chinois | WPRIM | ID: wpr-1018969

RÉSUMÉ

Objective:To explore the effect of interleukin (IL)-22 on the expression of nucleotide binding oligomerization domain like receptor protein 3 (NLRP3) and caspase-1 mRNA and secretion of IL-18 and IL-1β in macrophages induced by lipopolysaccharide (LPS), RAW264.7 macrophages were cultured in vitro.Methods:Macrophage RAW264.7 was cultured in vitro, and the cultured cells were divided into three groups (control group, LPS group and LPS+IL-22 group), and the experimental cells in each group were intervened, and cultured for 3, 6 and 24 h respectively, and the cells and supernatants in each group were collected. RT-PCR, Western Blot and ELISA were used to detect NLRP3 and caspase-1 when the inflammatory body of macrophage NLRP3 was activated.Results:The expression levels of NLRP3 and caspase-1 mRNA and the secretion levels of IL-1β and IL-18 were increased in the LPS group, and the differences were statistically significant compared with the control group. After LPS and IL-22 co-stimulated macrophages, the expression levels of NLRP3 and caspase-1 mRNA, and the secretion levels of IL-1β and IL-18 were increased to different degrees, which were significantly increased compared with the LPS group.Conclusion:IL-22 could provide a new therapeutic idea for sepsis by enhancing the expression of NLRP3 and caspase-1 mRNA and the secretion of IL-18 and IL-1β in macrophages induced by LPS.

8.
Article de Chinois | WPRIM | ID: wpr-1020556

RÉSUMÉ

Objective:To investigate the effects of macrophage(Mφ)polarization on the cementogenic differentiation of human perio-dontal ligament stem cells(hPDLSCs)and the underlying mechanism.Methods:Human monocytic THP-1 cells were induced to M0,M1 and M2 Mφ subsets,then RPM1 1640 medium or supernatants of different Mφ phenotypes were mixed with an equal volume of ce-mentoblastic induction medium to generate conditioned mediums(CMs),and termed as CM-Control,CM-M0,CM-M1 and CM-M2,respectively.hPDLSCs were cultured with different CMs,and the hPDLSCs sheets were then wrapped around treated dentin matrix(TDM)to generate cell sheet/dentin complexes.The complexes were subcutaneously implanted into nude mice.The cementum-like tissue formation was evaluated by HE staining,immunofluorescent staining(IMF)and qRT-PCR were used to detect the expression level of cementogenic differentiation-related markers bone sialoprotein(BSP),cementum attachment protein(CAP)and cementum pro-tein-1(CEMP-1),oxidant-antioxidant system-related markers superoxide dismutase 1(SOD1)and nuclear factor erythroid 2-related factor 2(NRF2),mitophagy-related markers PTEN induced putative kinase 1(PINK1)and microtubule asso ciated proteins 1A/1B light chain 3(LC3).Results:In vivo,CM-M2-treated hPDLSCs(CM-M2)group formed more cementum-like tissues and expressed higher protein levels of CAP,CEMP-1,SOD1,PINK1 and LC3 than that in other groups.In vitro tests showed that,compared with CM-Control group,hPDLSCs incubated with CM-M2 increased the levels of BSP(P<0.01),CAP(P<0.001),CEMP-1(P<0.01)and SOD1(P<0.05),while no statistically significant difference was detected for NRF2(P>0.05),and increasedthe expression of PINK1(P<0.05).Conclusion:M2 Mφ regulate the cementogenic differentiation of hPDLSCs possibly via modulating oxidant-antioxidant system and mitophagy.

9.
Article de Chinois | WPRIM | ID: wpr-1020793

RÉSUMÉ

Acute respimtory distress syndrome(ARDS)is an acute diffuse inflammatory lung injury caused by various internal and external lung injury factors.It has complex pathogenesis,rapid onset and high mortality,which seriously endangers human life and health.Pulmonary fibrosis is one of the important pathologic processes of ARDS occurrence and development,and it is also an important cause of death in ARDS patients.To a certain extent,the severity of pulmonary fibrosis in ARDS is determined by the dynamic balance of macrophage-fibroblast interactions.Therefore,this article aims to review the interaction mechanism of macrophage-fibroblasts in the pro-cess of ARDS pulmonary fibrosis,and provide new methods and ideas for the diagnosis and treatment of ARDS pul-monary fibrosis.

10.
Article de Chinois | WPRIM | ID: wpr-1020936

RÉSUMÉ

Tuberculosis(TB)is an infectious disease caused by Mycobacterium tuberculosis(MTB).Autophagy plays an im-portant role in eliminating MTB which can interfere with host autophagy through a variety of mechanisms,therefore,escape the killing of macrophages to survive and reproduce in the host cells for a long time.There are many kinds of differential expressed non-coding RNAs(ncRNAs)in macrophages upon MTB infection.These ncRNAs can affect the elimination of MTB by regula-ting the expression of autophagy-related genes in multiple processes of autophagy.Elucidating these regulatory networks are of great significance for the development of new anti-TB drugs.Therefore,the known mechanisms of ncRNAs that regulates the autophagy of MTB infected macrophages were summarized,and the process of autophagy and the main regulatory functions of ncRNAs were introduced in this review,in order to provide new perspectives for the pathogenesis of TB and the development of anti-TB drugs.

11.
Article de Chinois | WPRIM | ID: wpr-1021197

RÉSUMÉ

BACKGROUND:Studies have shown that atorvastatin can up-regulate the expression of heme oxygenase-1 and enhance the anti-inflammation and anti-oxidative damage ability of cells.However,whether atorvastatin can regulate macrophage polarization,inhibit inflammation and reduce cholesterol accumulation by inducing heme oxygenase-1 expression remains unclear. OBJECTIVE:To investigate the effect of atorvastatin on polarization,inflammation and cholesterol content of oxidized low-density lipoprotein stimulated RAW264.7 macrophages by inducing heme oxygenase-1 expression and its related mechanism. METHODS:Firstly,RAW264.7 cells were randomly divided into six groups and incubated with different concentrations of atorvastatin for 24 hours.The expression of heme oxygenase-1 protein and cell activity were detected to explore the optimal dose of atorvastatin for subsequent studies.RAW264.7 cells were randomly divided into control group,atorvastatin group and heme oxygenase-1 inhibition group.Cells were preincubated with pure medium,atorvastatin 20 μmol/L and atorvastatin 20 μmol/L + zinc protoporphyrin IX 10 μmol/L for 24 hours,and then oxidized low-density lipoprotein 50 mg/L was added for 48 hours.The polarization of macrophages was detected by flow cytometry.The secretion of inflammatory factors such as transforming growth factor β,interleukin 10,interleukin 1β,and tumor necrosis factor α was detected by ELISA.The expression levels of heme oxygenase-1,LC3II,LC3I,P62,PPARγ and ABCA1 were detected by western blot assay.The intracellular cholesterol content was measured with the oxidose method and the accumulation degree of intracellular lipid droplets was evaluated by oil red O staining. RESULTS AND CONCLUSION:(1)Atorvastatin could induce the expression of heme oxygenase-1 protein in macrophages in a dose-dependent manner.(2)Oxidized low-density lipoprotein could induce macrophages to polarize towards M1,secrete proinflammatory factors,and increase the accumulation of intracellular cholesterol.(3)Compared with the control group,the heme oxygenase-1 protein expression of macrophages was increased after atorvastatin intervention,and the cells turned to M2-type polarization and mainly secreted anti-inflammatory factors such as transforming growth factor-β and interleukin-10.PPARγ,ABCA1,LC3II/I and other signal molecules reflecting cholesterol efflux and autophagy increased,and the contents of intracellular cholesterol and lipid droplets decreased significantly(P<0.05).(4)The heme oxygenase-1 inhibition group treated with zinc protoporphyrin IX significantly reversed the above changes in the atorvastatin group.(5)The results have shown that atorvastatin may promote the polarization of macrophages stimulated by oxidized low-density lipoprotein to M2 type and inhibit inflammation by up-regulating the expression of heme oxygenase-1 and by up-regulating PPARγ/ABCA1 signaling pathway and enhancing autophagy.Atorvastatin can increase the outflow of intracellular cholesterol and reduce the accumulation of intracellular lipids.

12.
Article de Chinois | WPRIM | ID: wpr-1021229

RÉSUMÉ

BACKGROUND:The occurrence and development of osteoarthritis is strongly associated with immune abnormalities,and the importance of various immune cells and immune mediators in the pathogenesis of osteoarthritis has been continuously elucidated. OBJECTIVE:To review the role of immune cells and related cytokines in osteoarthritis disease,and provide new ideas for future research and prevention of osteoarthritis. METHODS:Taking"osteoarthritis,knee,macrophages,T cells,B cells,natural killer cells,dendritic cells,cytokines,inflammatory factors,immune cells"as search terms,relevant published literature was searched on CNKI,WanFang,VIP,PubMed and Web of Science databases.After reading the title and abstract for preliminary screening,98 articles were selected for review after reading the full text again. RESULTS AND CONCLUSION:In the past,it was believed that the pathogenesis of osteoarthritis was associated with cartilage wear.In recent years,studies have suggested that osteoarthritis is a chronic inflammatory state in which immune cells are widely involved.With the in-depth study of the pathogenesis of osteoarthritis,scholars believe that the pathogenesis of osteoarthritis is driven by early innate immune response,which will gradually catalyze degenerative changes and eventually lead to changes in the joint microenvironment.Various immune cells and cytokines are the key factors affecting the repair of osteoarthritis.Macrophages and natural killer cells participate in synovial inflammatory reaction,and T cell immune reaction participates in the degradation of osteoarthritis cartilage and aggravates the condition of osteoarthritis.Interleukin-1β secreted by immune cells,interleukin-6,tumor necrosis factor α,interleukin-17 and interleukin-37 play an important role in the pathophysiology of osteoarthritis,among which interleukin-1β is the most important inflammatory factor causing articular cartilage damage.Assessing immunological risk factors at the early stage of osteoarthritis can effectively treat the disease at an early stage,which can significantly reduce disability,morbidity and costs associated with osteoarthritis.At present,the immunomodulatory effect of stem cells and their derived secretions and biomaterials on the treatment of osteoarthritis has been confirmed in different experimental models,but there is still a lot of research to be done before they are used in clinical practice.With the discovery of new therapeutic targets,targeted treatment will bring new hope for the repair of clinical osteoarthritis.

13.
Article de Chinois | WPRIM | ID: wpr-1021277

RÉSUMÉ

BACKGROUND:Early transient presence of M1 macrophages can play a beneficial role after the implantation of bone tissue engineering materials.Recently,strategies for manipulating M1 macrophages to produce an early moderate inflammatory response have been extensively studied and many research advances have been made in the design of bone tissue engineering materials. OBJECTIVE:To review the role of early transient presence of M1 macrophages in bone tissue engineering and recent research advances in the strategy for activating early transient presence of M1 macrophages in the field of bone tissue engineering. METHODS:Relevant literature included in PubMed,WanFang database,and CNKI Database from January 2012 to October 2022 was searched.Search terms were"M1,macrophage,bone immunoregulation,bone defect,osteogenesis,osteoimmunology,angiogenesis"in English and Chinese.After excluding articles irrelevant to the research purpose and repetitive articles,63 papers were finally included for review. RESULTS AND CONCLUSION:The early transient presence of M1 macrophages play a key role in bone tissue engineering by promoting angiogenesis,facilitating osteogenic differentiation of bone marrow mesenchymal stem cells and promoting an M2 macrophage phenotype.Strategies for inducing and activating early transient presence of M1 macrophages can modulate the local immune microenvironment for bone defect repair in a manner consistent with early natural bone healing,including modulation of the physicochemical properties of bone tissue engineering materials to promote appropriate M1 macrophage-mediated inflammatory responses,sequential delivery of cytokines,microRNAs or bioactive ions to facilitate the M1-to-M2 transition of macrophages,and controlled release of anti-inflammatory substances to achieve the maintenance of early inflammatory responses.

14.
Article de Chinois | WPRIM | ID: wpr-1021342

RÉSUMÉ

BACKGROUND:As the incidence of spinal cord injury increases with the years and axon regeneration after spinal cord injury was very difficult.How to promote the recovery from spinal cord injury and improve the transplantation efficiency of stem cells and other therapeutic cells after spinal cord injury has been the focus of clinical and scientific research. OBJECTIVE:To establish the efficient transplantation and replacement of mouse spinal cord microglia in the spinal cord injury model. METHODS:CX3CR1 creER-/+::LSL-BDNF-/+-tdTomato mice,CX3CR1+/GFP mice,β-actin GFP mice and C57 BL/6J wild-type mice at 8-10 weeks of age were selected.According to the requirements of the experiment,they were randomly divided into six groups.(1)Sham operation group:eight C57 BL/6J wild-type mice were used when only the lamina was removed without injury.(2)Spinal cord contusion injury group:eight C57 BL/6J wild-type mice were used.(3)Spinal cord crush injury group:eight C57 BL/6J wild-type mice were used.(4)Conjoined symbiotic spinal cord strike injury group:β-actin GFP mice with green fluorescent blood were surgically stitched together with C57 BL/6J wild-type mice,using eight β-actin GFP mice and eight C57 BL/6J wild-type mice.(5)Mr BMT-X Ray group(using PLX5622 to eliminate the spinal microglia and bone marrow transplantation with X-ray radiation):Bone marrow cells from four CX3CR1 creER-/+::LSL-BDNF-/+-tdTomato mice were extracted and transplanted into eight C57 BL/6J wild-type mice for spinal cord injury modeling.(6)Mr BMT-Busulfan group(using PLX5622 to eliminate the spinal microglia and bone marrow transplantation with Busulfan):Bone marrow cells from four CX3CR1+/GFP mice were transplanted into eight C57 BL/6J wild-type mice.The percentage of cell transplantation replacement in this group was observed,and the spinal cord injury model was not established in this group.The sham operation group,spinal cord contusion injury group and spinal cord crush injury group were sampled by perfusion on day 14 after spinal cord injury.The conjoined symbiotic spinal cord strike injury group was sampled by perfusion on day 7 after spinal cord injury.Mr BMT-X Ray group was sampled by perfusion on day 28 after spinal cord injury.Mr BMT-Busulfan group was sampled by perfusion on day 28 after transplantation.The sampling site was a 1.2 cm long spinal cord with the T10 segment as the center.In the Mr BMT-X Ray group and Mr BMT-Busulfan group,additional mouse brain tissue was retained to see if it would lead to brain transplantation and replacement.The number and proportion of transplanted and replaced cells in the damaged area were measured using transgenic mice,symbiosis and immunofluorescence. RESULTS AND CONCLUSION:Compared with the traditional peripheral blood transplantation(9.8%)of mice in the conjoined symbiotic spinal cord strike injury group,the new transplantation methods,Mr BMT-X Ray and Mr BMT-Busulfan,could greatly improve the proportion of spinal microglia transplantation and replacement,which could reach 84.8%and 95.6%,respectively.The difference was significant(P<0.05).The results showed that Mr BMT-X Ray and Mr BMT-Busulfan could achieve efficient replacement of spinal microglia cells,and could improve the problems of low cell transplantation efficiency,few survival numbers and unclear differentiation of the traditional cell transplantation methods.In addition,Mr BMT-X Ray can only replace the microglia in the spinal cord,while Mr BMT-Busulfan could avoid brain inflammation and injury caused by X-ray radiation transplantation.

15.
Article de Chinois | WPRIM | ID: wpr-1021389

RÉSUMÉ

BACKGROUND:In recent years,studies have shown that obesity is closely related to chronic inflammation.Due to excessive energy intake,inflammatory macrophage infiltration and inflammatory response occur in visceral adipose tissue,which is crucial for the regulation of adipose tissue fibrosis. OBJECTIVE:To summarize the molecular mechanism of inflammation-related signals involved in the regulation of adipose tissue fibrosis and to provide reference for the treatment of adipose tissue fibrosis and related metabolic diseases through anti-inflammatory pathways. METHODS:Relevant documents were retrieved from CNKI and PubMed,and the Chinese and English search words were"inflammation,inflammatory factors,inflammatory signals,lip fibrosis,adipose fibrosis,adipose tissue fibrosis"respectively.The search period was from January 2003 to December 2022.Finally,52 documents meeting the criteria were included for review. RESULTS AND CONCLUSION:During obesity,visceral adipose tissue expands through adipocyte proliferation and hypertrophy to store excess energy,and defects caused by remodeling or functional changes mainly include impaired angiogenesis,adipocyte apoptosis promoted by white adipose tissue hypoxia,macrophage infiltration,and adipocyte fibrosis.Adipose tissue fibrosis has adverse effects on the natural growth of adipose cells.The factors that trigger chronic inflammation of adipose tissue include a variety of signal stimuli,such as adipocyte death caused by hypoxia,mechanical signal transduction caused by extracellular matrix remodeling and lipogenic factor imbalance.Inflammatory factors such as interleukin-1β,tumor necrosis factor-α,C-type lectins and adiponectin secreted by adipocytes and other inflammatory signaling pathways such as nuclear factor-κB,transforming growth factor-β/Smad and MAPK jointly regulate the process of adipose tissue fibrosis.

16.
Article de Chinois | WPRIM | ID: wpr-1021417

RÉSUMÉ

BACKGROUND:Periprosthetic osteolysis is the most common long-term complication of total joint arthroplasty.Many studies suggest that the inflammasome may play an important role during the osteolysis.Melatonin is a rhythm-regulated hormone secreted by the pineal gland with many functions including anti-inflammatory,anti-oxidation,and antitumor,but its effects on osteolysis and inflammasome have yet to be explored. OBJECTIVE:To explore the effect of melatonin on the osteolysis induced by wear particles and the role of melatonin on the activation of NLRP3 inflammasome. METHODS:(1)In vivo test:Fifteen C57BL/6 mice were randomly divided into sham operation group,osteolysis group and melatonin group by random number table method,with 5 mice in each group.The osteolysis model of the osteolysis group and the melatonin group was established by injecting cobalt-chromium-molybdenum(CoCrMo)particles into the sagittal suture of the skull.After injection,the melatonin group was intraperitoneally injected with 50 mg/(kg·d)of melatonin for 14 consecutive days.After drug intervention,the mouse calvarium was collected for micro-CT analysis to observe the micro-structural changes around the sagittal suture.(2)In vitro test:Mouse bone marrow-derived macrophages and THP-1 cells(which had been induced to differentiate into macrophages)were taken and divided into seven groups:normal group,lipopolysaccharide group,lipopolysaccharide+CoCrMo group and melatonin 0.5,1,1.5,2 mmol/L groups(lipopolysaccharide and CoCrMo were added to the melatonin intervention groups).After the intervention for 6 hours,the expression of related proteins(NLRP3,Caspase-1,interleukin-1β,and gasdermin D,gasdermin D-N terminal)in the inflammasome of cell lysate or cell culture supernatant was detected by western blot assay.Cytotoxicity and cell death were observed through lactate dehydrogenase release and live-dead fluorescence staining. RESULTS AND CONCLUSION:(1)In vivo test:Micro-CT scanning 3D reconstruction images showed that the bone mass around the sagittal suture of the skull of mice in the osteolysis group was significantly reduced,and the bone tissue structure was severely damaged.Compared with the osteolysis group,the bone mass around the sagittal suture of the skull in the melatonin group was significantly increased,and the destruction of tissue structure was reduced.(2)In vitro test:For mouse bone marrow-derived macrophages,lipopolysaccharide significantly up-regulated NLRP3 protein expression in cell lysate,and melatonin intervention could reduce NLRP3 protein expression in a dose-dependent manner.CoCrMo particles significantly up-regulated the protein expressions of the gasdermin D-N terminal in cell lysate and Caspase-1 and interleukin-1β in the supernatant of cell culture,while melatonin intervention could reduce the expression of these proteins in a dose-dependent manner.For THP-1 cells,the protein expressions of Caspase-1 and interleukin-1β in the supernatant of cell culture were significantly up-regulated by CoCrMo particles,and the expression of these proteins was decreased dose-dependent by melatonin intervention.Lactate dehydrogenase release and live-dead fluorescence staining showed that CoCrMo particles significantly increased the release of lactate dehydrogenase and cell death in the supernatant of mouse bone marrow-derived macrophage culture,and melatonin intervention could reduce the release of lactate dehydrogenase and cell death.(3)The results show that melatonin can inhibit particle-induced inflammasome activation and pyroptosis to suppress periprosthetic osteolysis.

17.
Article de Chinois | WPRIM | ID: wpr-1021419

RÉSUMÉ

BACKGROUND:Clinical skin wound healing continues to be a significant concern,and tissue repair research has moved to the forefront with the development of biomaterials with immunomodulatory properties.Therefore,it is crucial to research wound dressings that have immunomodulatory properties. OBJECTIVE:To prepare chitosan hydrogels that have been modified by arginine with different configurations and assess their capacity to speed up wound healing in a rat animal model. METHODS:(1)In vitro trial:Chitosan modified by pure L-arginine,pure D-arginine,and L-arginine and D-arginine was synthesized by EDC/NHS system,which was then crosslinked with aldehyde-modified four-arm polyethylene glycol.Different chitosan-based hydrogels(CS-L,CS-D,and CS-DL)were finally formed via the Schiff base reaction.Three kinds of hydrogel extracts were co-cultured with fibroblasts respectively.Hydrogel cytocompatibility was assessed using the CCK-8 assay and live/dead staining.The effect of hydrogel on the migration capacity of fibroblasts was assessed by using a scratch test.Three kinds of hydrogels were incubated with rat erythrocyte suspension respectively to evaluate the hemocompatibility of the hydrogels.The hydrogel extract was co-cultured with RAW264.7 macrophages to test the hydrogels'capacity to enhance macrophage NO generation and polarize macrophage phenotype.(2)In vivo experiment:A total of 36 adult SD rats were divided into 4 groups with 9 rats in each group by the random number table method.Two full-layer skin defect wounds of 2 cm×2 cm were made on the back of each rat.Normal saline was added to the wounds of the control group,and corresponding hydrogel was added to the wounds of the CS-L,CS-D,and CS-DL groups,respectively,and then bandaged and fixed.The wound healing was observed regularly after operation.Hematoxylin-eosin staining was performed at 3,10,and 21 days after operation.The samples were collected 10 days after operation and M2 macrophage immunofluorescence staining was performed. RESULTS AND CONCLUSION:(1)In vitro experiments:Under scanning electron microscopy,the three kinds of hydrogels exhibited obvious interpenetrating network structures with pore sizes ranging from 70-200 μm.The three kinds of hydrogels have good swelling performance,degradation performance,self-healing performance,and suitable mechanical strength.The three kinds of hydrogels had good cytocompatibility and hemocompatibility and could promote the migration of fibroblasts.All three kinds of hydrogels had the ability to promote the polarization of macrophages,and CS-D hydrogels had the strongest ability to promote the polarization of macrophages.CS-L hydrogel could significantly promote the production of NO in macrophages.(2)In vivo experiment:3 and 10 days after operation,the wound healing rate in the CS-L and CS-D groups was higher than that in the control group(P<0.05).After 21 days,the wound healing rate of the three hydrogel groups was higher than that of the control group.Hematoxylin-eosin staining displayed that a large number of inflammatory cells were infiltrated in the wound tissue of rats in all groups,accompanied by neovessels and fibroblasts 3 days after operation.10 days after operation,there was still more inflammatory cell infiltration in the wound of the control group,and the inflammation of the other three groups was improved,especially the decrease of inflammatory cells in the CS-D group was more obvious.21 days after operation,the wound epithelium of each group was well repaired,and there was basically no inflammatory cell infiltration in the CS-L and CS-D groups,while there was still a small amount of inflammatory cell infiltration in the control group.Immunofluorescence staining revealed that the number of M2-type macrophages in the CS-D group was higher than that in the other three groups(P<0.05).(3)The results conclude that chitosan hydrogels modified by different configurations of arginine can promote wound healing through different mechanisms.

18.
Article de Chinois | WPRIM | ID: wpr-1021423

RÉSUMÉ

BACKGROUND:Inflammation,oxidative stress and bacterial infection are the main causes of delayed wound healing in diabetes.In recent years,various inorganic nanomaterials have been widely used in the treatment of skin wound healing due to their antibacterial activities,but their effects on anti-oxidation and anti-inflammation are limited. OBJECTIVE:To investigate the effect of Prussian blue nanoparticles on the wound repair of diabetes in terms of antioxidant,anti-inflammatory and photothermal antibacterial activities. METHODS:Prussian blue nanoparticles were prepared and characterized.(1)In vitro:The biocompatibility of Prussian blue nanoparticles with different concentrations was detected by MTT assay.The cytoprotective effect of Prussian blue nanoparticles and the intracellular reactive oxidative species level were examined under the condition of hydrogen peroxide.The ability of Prussian blue nanoparticles to decompose hydrogen peroxide and superoxide anion radicals was tested;the effect of Prussian blue nanoparticles on lipopolysaccharide-induced macrophage inflammation was investigated.The photothermal antibacterial activity of Prussian blue nanoparticles was detected by the plate colony counting method.(2)In vivo:ICR mice were intraperitoneally injected with streptozotocin to establish a diabetes mouse model.After the model was successfully established,a 6 mm wound was created on the back with a hole punch.There were the control group(no treatment),the Prussian blue group and the Prussian blue with light group.The wound healing and histomorphological changes were observed. RESULTS AND CONCLUSION:(1)In vitro:Prussian blue nanoparticles in 25-200 μg/mL were non-toxic to cells.Prussian blue nanoparticles had the extremely strong antioxidant capacity and mitigated the intracellular reactive oxidative species at a high oxidative stress environment,resulting in a pronounced cytoprotective effect.The Prussian blue nanoparticles not only exhibited hydrogen peroxide degradation activity but also showed strong superoxide scavenging ability.Prussian blue nanoparticles also displayed significant anti-inflammatory activity and extremely strong antibacterial ability after light irradiation.(2)In vivo:After 14 days,the wound sizes of the Prussian blue group and Prussian blue with light group were significantly reduced,and the healing speed of Prussian blue with light group was the fastest.Hematoxylin-eosin and Masson staining showed a lot of granulation tissue formation and collagen deposition in the Prussian blue group and the Prussian blue with light group,of which the Prussian blue with light group was the most.Immunofluorescence staining displayed that,compared with the control group,the expressions of α-SMA and CD31 were increased significantly in Prussian blue group and Prussian blue with light group(P<0.05),but F4/80 expression was decreased significantly in Prussian blue group and Prussian blue with light group(P<0.05),indicating more obvious improvement in the Prussian blue with light group.(3)These results showed that Prussian blue nanoparticles could promote the skin wound healing of the diabetes mouse model by exerting anti-inflammatory,antioxidant and antibacterial effects.

19.
Article de Chinois | WPRIM | ID: wpr-1021436

RÉSUMÉ

BACKGROUND:Micro-arc oxidation can effectively add bioactive elements to the metal surface and improve the anti-bacterial and anti-inflammatory properties of biomedical metal materials,so this technology has become one of the hotspots of biomedical materials. OBJECTIVE:To summarize the anti-bacterial and anti-inflammatory properties of surface coatings prepared by the combination of micro-arc oxidation and other surface modification technologies. METHODS:Articles from January 1996 to December 2022 were searched on CNKI,WanFang and PubMed databases using Chinese and English search terms"micro-arc oxidation,antibacterial properties,anti-inflammatory properties,metal implants".After preliminary screening according to inclusion and exclusion criteria,89 articles were retained and summarized. RESULTS AND CONCLUSION:The ceramic layer prepared by micro-arc oxidation can improve the anti-bacterial and anti-inflammatory properties of titanium,magnesium and other alloys.Combination with other surface modification technologies can effectively solve the effect of pores on the surface properties of the alloy,and further improve the biological properties of the oxide film.It has a wide application prospect in orthopedics and dentistry.At present,most studies are limited to metal coatings,and most of them focus on metal elements with good antibacterial properties such as silver and copper,while only a few studies mention non-metallic coatings such as graphene oxide,hydroxyapatite and chitosan.In the future,extensive studies can be conducted on inorganic coatings and polymer coatings,and more combinations of different bioactive elements can also be adopted to improve antibacterial properties.Currently,studies on the inflammation of implant coatings prepared by micro-arc oxidation are mostly limited to the immune system and focused on macrophages,while studies on neutrophils and platelets are scarce.In the future,a variety of advanced technologies should be combined to explore the specific effects of micro-arc oxidation coating on other immune cells and inflammatory cells.

20.
Article de Chinois | WPRIM | ID: wpr-1021502

RÉSUMÉ

BACKGROUND:M2 macrophages have the function of reducing inflammatory factors and promoting tissue healing.Therefore,how to regulate M2 polarization of macrophages has been a hot research topic in recent years,and some miRNAs have been found to have this function. OBJECTIVE:To investigate the effects of miR-378a on the polarization of the Raw264.7 macrophage cell line. METHODS:The M1 polarization of macrophages was induced by lipopolysaccharide and interferon-γ.Interleukin-4 induced M2 polarization and the expression of endogenous miR-378a in each cell type was detected using qRT-PCR to verify whether miR-378a was involved in the polarization of macrophages.By transfection with lentivirus as the vector of overexpression of miR-378a,the stable expression of miR-378a cell lines was screened.Macrophage M1 polarization was induced synergically by lipopolysaccharide and interferon-γ.Macrophage M2 polarization was induced by interleukin-4.The levels of M1/M2 polarization-related cytokines in the supernatant of the macrophage culture medium were determined by enzyme-linked immunosorbent assay.qRT-PCR was used to detect the polarization characteristics of M1/M2-type macrophages and the mRNA expression levels of related cytokines. RESULTS AND CONCLUSION:(1)The expression level of endogenous miR-378a in Raw264.7 cells of each group increased after macrophage polarization.(2)Compared with the non-transfected group,the expressions of proinflammatory cytokine-induced nitric oxide synthase,tumor necrosis factor-α,interleukin-6 and interleukin-1β in macrophage M1 induced polarization were significantly decreased in the miR-378a transfection group(P<0.05);the levels of inducible nitric oxide synthase,tumor necrosis factor-α and interleukin-6 in cell supernatant were also significantly decreased(P<0.05).(3)Compared with the non-transfected group,the expressions of CD206,interleukin-10 and arginase-I in macrophage M2 induced polarization were significantly increased(P<0.05);the levels of CD206 and interleukin-10 in cell supernatant were also significantly increased(P<0.05)in the miR-378a transfection group.(4)It is indicated that overexpression of miR-378a promotes the M2 polarization of macrophages and inhibits the M1 polarization of macrophages.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE