Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 152
Filtre
1.
Acta Pharmaceutica Sinica ; (12): 359-367, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016652

Résumé

This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice. In vitro, HK-2 cells and transforming growth factor beta 1 (TGF-β1, 10 ng·mL-1) were used to induce fibrotic model, and high glucose (30 mmol·L-1) was used to induce oxidative stress model, and then treated with different concentrations of MYR, WB was used to detect the expression of fibrosis and oxidative stress-related proteins, while NIH/3T3 cells were treated with different concentrations of MYR, and their effects on cell proliferation were detected by 5-bromo-2′-deoxyuridine (Brdu). The results showed that the renal lesions in UUO group and CBDL group were severe, collagen deposition was obvious, the expression of collagen-Ⅰ (COL-Ⅰ), α-smooth muscle actin (α-SMA), fibronectin (FN), vimentin and plasminogen activator inhibitor-1 (PAI-1) protein was up-regulated, and the activity of SOD enzyme in CBDL group was significantly decreased. MYR partly reversed the above changes after treatment. MYR inhibited the proliferation of NIH/3T3 cells but had no effect on the proliferation of HK-2 cells, and decreased the upregulation of PAI-1, FN and vimentin in HK-2 cells stimulated by TGF-β1. MYR can also up-regulate the down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in HK-2 cells stimulated by high glucose. To sum up, MYR can improve renal fibrosis in vivo and in vitro, probably by inhibiting the proliferation of fibroblasts and activating Nrf2/HO-1 signal pathway to inhibit oxidative stress.

2.
Article Dans Chinois | WPRIM | ID: wpr-1003414

Résumé

ObjectiveTo observe the effects of Hirudo, Notoginseng Radix et Rhizoma, and drug pair on renal pathological morphology and protein phosphatase 2A (PP2A)/adenylate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway in rats with chronic renal failure (CRF). MethodThe 55 male SD rats were randomly divided into a normal group (n=11) and a modeling group (n=44). The normal group was fed conventionally, and the modeling group was given 0.25 g·kg-1·d-1 adenine by gavage for 28 days to replicate the CRF model. After successful modeling, rats were randomly divided into model group, Hirudo group (3 g·kg-1·d-1), Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), and Hirudo + Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), with 9 rats in each group. The normal group and model group were given a constant volume of normal saline by intragastric administration for 30 days. At the end of the experiment, the levels of serum creatinine (SCr) and urea nitrogen (BUN) in all groups were measured. The renal pathological morphology changes were observed by hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy. The mRNA expressions of PP2A, AMPK, and mTOR were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of PP2A, AMPK, phosphorylation(p)-AMPK, mTOR, and p-mTOR in renal tissue were detected by Western blot. ResultCompared with the normal group, the renal pathological structure changes were obvious, and the levels of SCr and BUN were significantly increased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression were significantly increased, and the p-AMPK/AMPK was significantly decreased in the model group (P<0.05). Compared with the model group, the renal pathological morphology changes were significantly improved, and the levels of SCr and BUN were significantly decreased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression in the renal tissue were significantly decreased, and the p-AMPK/AMPK was significantly increased (P<0.05) in all groups after drug intervention. In addition, the effect in the Hirudo+Notoginseng Radix et Rhizoma group was better. The mRNA expression levels of AMPK and mTOR in the renal tissue were not significantly different among the normal group, model group, and other groups. ConclusionThe efficacy of Hirudo and Notoginseng Radix et Rhizoma pairs in improving renal fibrosis in rats with CRF is significantly better than that of the single drug, and its improvement on renal fibrosis in rats with CRF may be related to the regulation of PP2A/AMPK/mTOR signaling pathway.

3.
Organ Transplantation ; (6): 19-25, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005229

Résumé

Renal allograft fibrosis is one of the common and severe complications after kidney transplantation, which seriously affects the function and survival rate of renal allograft, and may even lead to organ failure and patient death. At present, the researches on renal allograft fibrosis are highly complicated, including immunity, ischemia-reperfusion injury, infection and drug toxicity, etc. The diagnosis and treatment of renal allograft fibrosis remain extremely challenging. In this article, the latest research progress was reviewed and the causes, novel diagnosis and treatment strategies for renal allograft fibrosis were investigated. By improving diagnostic accuracy and optimizing treatment regimen, it is expected to enhance clinical prognosis of kidney transplant recipients, aiming to provide reference for clinicians to deliver proper management for kidney transplant recipients.

4.
Organ Transplantation ; (6): 125-130, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005242

Résumé

Renal fibrosis is a common pathological change from development to end-stage renal diseases in all progressive chronic kidney diseases. Renal fibrosis after kidney transplantation will severely affect the renal graft function. Macrophages are characterized with high heterogeneity and plasticity. During the process of kidney injury, macrophages are recruited, activated and polarized by local microenvironment, and participate in the process of renal tissue injury, repair and fibrosis through multiple mechanisms. Recent studies have shown that macrophages may transit into myofibroblasts and directly participate in the formation of renal fibrosis. This process is known as macrophage-myofibroblast transition. Nevertheless, the regulatory mechanism remains elusive. In this article, the role of macrophages in renal fibrosis, the characteristics of macrophage-myofibroblast transition and the possible regulatory mechanism were reviewed, aiming to provide reference for relevant research of renal fibrosis.

5.
China Pharmacy ; (12): 1327-1333, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1031708

Résumé

OBJECTIVE To investigate the effects of Taohong siwu decoction modified granules on podocyte epithelial- mesenchymal-transition (EMT) and renal fibrosis in diabetic kidney disease (DKD) model rats. METHODS Eight rats were selected as normal group (ordinary feed); the remaining rats were given a high-glucose and high-fat diet combined with intraperitoneal injection of streptozotocin (35 mg/kg) to induce the DKD model. Model rats were randomly divided into model group, irbesartan group [positive control, 13.5 mg/(kg·d)] and modified Taohong siwu decoction group [6.48 g/(kg·d)], with 8 rats in each group. All groups were given relevant medicine intragastrically, once a day, for 16 consecutive weeks. Twenty-four- hour urinary total protein (24 h UTP) was detected at the end of the 4th, 8th, 12th and 16th week of administration. After the last medication, the body mass, water intake, food intake, urine output, the levels of fasting blood glucose, serum creatinine (Scr) and blood urea nitrogen (BUN) as well as mRNA and protein expressions of P-cadherin, nephrin, α -smooth muscle actin (α-SMA), Wilms’ tumor gene 1 (WT1), transforming growth factor-β1( TGF-β1) and type Ⅳ collagen (Col-Ⅳ) in renal tissue were determined. The pathological and morphological changes in renal tissue were observed and the thickness of the glomerular basement membrane was determined. RESULTS Compared with the model group, 24 h UTP of rats was significantly decreased in modified Taohong siwu decoction group since the 8th weekend (P<0.05); the body weight of rats increased significantly, but the amount of water intake and urine decreased significantly; Scr and BUN level, mRNA expression of α-SMA, mRNA and protein expressions of TGF-β1 and Col-Ⅳ were significantly reduced, while the mRNA expressions of P-cadherin, nephrin and WT1 were increased significantly (P<0.05); the protein deposition of α-SMA was reduced, protein depositions of P-cadherin, nephrin and WT1 were increased; the pathological damage and fibrosis of renal tissue were relieved; the thickness of glomerular basement membrane was decreased significantly (P<0.05). CONCLUSIONS Taohong siwu decoction modified granules can inhibit the EMT of podocyte in DKD model rats, and alleviate renal pathological damage and podocyte damage, thus protecting renal function, and delaying the process of renal fibrosis.

6.
China Pharmacy ; (12): 1327-1333, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1031730

Résumé

OBJECTIVE To investigate the effects of Taohong siwu decoction modified granules on podocyte epithelial- mesenchymal-transition (EMT) and renal fibrosis in diabetic kidney disease (DKD) model rats. METHODS Eight rats were selected as normal group (ordinary feed); the remaining rats were given a high-glucose and high-fat diet combined with intraperitoneal injection of streptozotocin (35 mg/kg) to induce the DKD model. Model rats were randomly divided into model group, irbesartan group [positive control, 13.5 mg/(kg·d)] and modified Taohong siwu decoction group [6.48 g/(kg·d)], with 8 rats in each group. All groups were given relevant medicine intragastrically, once a day, for 16 consecutive weeks. Twenty-four- hour urinary total protein (24 h UTP) was detected at the end of the 4th, 8th, 12th and 16th week of administration. After the last medication, the body mass, water intake, food intake, urine output, the levels of fasting blood glucose, serum creatinine (Scr) and blood urea nitrogen (BUN) as well as mRNA and protein expressions of P-cadherin, nephrin, α -smooth muscle actin (α-SMA), Wilms’ tumor gene 1 (WT1), transforming growth factor-β1( TGF-β1) and type Ⅳ collagen (Col-Ⅳ) in renal tissue were determined. The pathological and morphological changes in renal tissue were observed and the thickness of the glomerular basement membrane was determined. RESULTS Compared with the model group, 24 h UTP of rats was significantly decreased in modified Taohong siwu decoction group since the 8th weekend (P<0.05); the body weight of rats increased significantly, but the amount of water intake and urine decreased significantly; Scr and BUN level, mRNA expression of α-SMA, mRNA and protein expressions of TGF-β1 and Col-Ⅳ were significantly reduced, while the mRNA expressions of P-cadherin, nephrin and WT1 were increased significantly (P<0.05); the protein deposition of α-SMA was reduced, protein depositions of P-cadherin, nephrin and WT1 were increased; the pathological damage and fibrosis of renal tissue were relieved; the thickness of glomerular basement membrane was decreased significantly (P<0.05). CONCLUSIONS Taohong siwu decoction modified granules can inhibit the EMT of podocyte in DKD model rats, and alleviate renal pathological damage and podocyte damage, thus protecting renal function, and delaying the process of renal fibrosis.

7.
Article Dans Chinois | WPRIM | ID: wpr-1028769

Résumé

AIM To explore the effect of Heidihuang Pills on renal fibrosis in a rat model of chronic renal failure(CRF)and its mechanism.METHODS Wistar rats were randomly divided into the blank group for normal feeding and the model group for the establishment of CRF rat models by 5/6 nephrectomy.Subsequently,the successfully established rat models were randomly divided into the model group,the Heidihuang Pills group(10.43 g/kg),and the Heidihuang Pills+IGF-1R blocker(JB1)group for a regimen of 7-day subcutaneous injection of 18 μg/kg JB1 followed by gavage of 10.43 g/kg Heidihuang Pills.Eight weeks after the administration,the rats had their serum levels of Scr and BUN detected;their pathological changes of renal tissue observed by HE and Masson staining;their renal protein expressions of TGF-β,HIF-1α and α-SMA detected by immunohistochemistry;their renal protein expressions of IGF-1R and TGF-β detected by Western blot;and their renal mRNA expressions of IGF-1R and TGF-β detected by RT-qPCR.RESULTS Compared with the blank group,the model group displayed increased serum levels of Scr and BUN(P<0.05);increased,degree of renal fibrosis,and renal fibrosis area(P<0.05);increased renal expressions of TGF-β,HIF-1α,α-SMA proteins and TGF-β mRNA(P<0.05);and decreased expressions of IGF-1R mRNA and protein(P<0.05).Compared with the model group,the Heidihuang Pills group displayed decreased serum Scr and BUN levels(P<0.05);decreased inflammatory cells in renal interstitium and the fibrosis degree(P<0.05);decreased renal expressions of TGF-β,HIF-1α,α-SMA proteins and TGF-β mRNA(P<0.05);and increased expressions of IGF-1R mRNA and protein(P<0.05).However,the administration of JB1 could weaken the improvement effect of Heidihuang Pills on renal fibrosis in CRF rats(P<0.05).CONCLUSION Heidihuang Pills can inhibit the renal fibrosis in CRF rats,and the inhibition process is related to up-regulated IGF-1 expression and promoted combination of IGF-1 and IGF-1R.

8.
Article Dans Chinois | WPRIM | ID: wpr-1018270

Résumé

Objective:To investigate the protective effects and mechanism of Shenyan 1 Prescription on renal fibrosis of unilateral ureteral obstruction (UUO) rats through TGF- β 1/Smad homologous 3 (Smad3) pathway regulating ferroptosis.Methods:Totally 48 male SD rats were divided into four groups: sham-operation group, UUO model group, and Shenyan 1 Prescription low-(10 drug/kg) , and high-dosage (20 crude drug/kg) groups according to random number table method, with 12 rats in each group. The UUO model was induced by the method of unilateral ureteral obstruction except for those sham-operation group. After modeling, rats received corresponding drugs or normal saline by gavage for 4 weeks, once per day. After 4 weeks, the body mass and the left kidney weight were measured. The 24 h urine protein and the levels of serum albumin (ALB), alanine aminotransferase (ALT), serum creatinine (SCr) and blood urea nitrogen (BUN) were detected by biochemical analysis method; the ROS level in renal tissue was measured using a chemical fluorescence assay kit, and the SOD and MDA levels in left renal tissue of rats were measured using ELISA method; the morphology of renal tissue and the specific blue staining of hemosiderin were observed using HE and Prussian blue staining methods, respectively; the expressions of transforming growth factor-β1 (TGF-β1), Smad3, glutathione peroxidase 4 (GPX4), and solute carrier family 1 member 5 (SLC1A5) were detected by Western blot.Results:Compared with the model group, the 24 h urinary protein excretion in Shenyan 1 Prescription high-dosage group decreased ( P<0.05), the serum ALB level increased ( P<0.05), the ALT level decreased ( P<0.05), and the expression of SLC1A5 in renal tissue decreased ( P<0.05); the left kidney weight/body decreased in Shenyan 1 Prescription low- and high-dosage groups ( P<0.05); the levels of serum ROS and MDA decreased ( P<0.05), and the activity of SOD significantly increased ( P<0.05); the expressions of TGF-β1 and Smad3 in renal tissue decreased ( P<0.05), and the expression of GPX4 increased ( P<0.05), and the renal pathological injury and ion deposition were improved. Conclusion:Shenyan 1 Prescription has a protective effect on the structure and function of renal tissues in UUO rats through regulating ferroptosis via inhibition of the TGF-β1/ Smad3 pathway to inhibit renal fibrosis of UUO rats.

9.
Article Dans Chinois | WPRIM | ID: wpr-1023854

Résumé

AIM:Bone morphogenetic protein 7(BMP7)reduces the expression of Yes-related protein 1(YAP1)by down-regulating Ajuba level and decreasing extracellular matrix(ECM)deposition.This study aimed to inves-tigate the influence of these factors on modifying the degree of renal fibrosis in rats with diabetic nephropathy.METH-ODS:Eighteen Sprague-Dawley(SD)rats were randomly divided into three groups:the normal control(NC)group,the diabetes mellitus(DM)group,and the DM group treated with BMP7 overexpressing adeno-associated virus(DM+rAAV-BMP7).Each group consisted of six rats.Diabetic kidney disease(DKD)was established in the DM and DM+rAAV-BMP7 groups by injecting 55 mg/kg streptozotocin(STZ)via the tail vein.NRK-52E cells were divided into three groups:the normal glucose(NG)group,the high glucose(HG)group,and the high glucose group treated with recombinant hu-man BMP7(HG+rhBMP7)group.Pathological changes in renal tissues were observed using hematoxylin and eosin(HE)and Sirius red staining.Immunohistochemical staining was performed to examine the expression sites of Ajuba and YAP1 in the renal cortex.Western blot analysis was conducted to determine the expression levels of BMP7,Ajuba,YAP1,colla-gen type Ⅲ(Col-Ⅲ),and fibronectin(FN)in the rat renal cortex and NRK-52E cells.RT-qPCR was used to measure the mRNA levels of Ajuba and YAP1 in the rat renal cortex.RESULTS:Biochemical indices revealed significantly ele-vated levels of blood glucose,serum creatinine,triglycerides,total cholesterol,and 24-hour urinary protein in the DM group compared to the NC group(P<0.05).In the DM+rAAV-BMP7 group,the levels of serum creatinine,24-hour uri-nary protein,triglycerides,and total cholesterol were lower than those in the DM group(P<0.05).Pathological staining demonstrated that the renal interstitium of the DM group exhibited inflammatory cell infiltration,fibrous tissue,collagen fi-ber deposition,disordered renal tubule arrangement,atrophy,and vacuolar degeneration,which were ameliorated in the DM+rAAV-BMP7 group.Immunohistochemistry revealed that Ajuba and YAP1 were mainly expressed in the cytoplasm and nucleus,with high expression in the cytoplasm of the DM group,which was significantly decreased in the DM+rAAV-BMP7 group.Western blot results indicated that the protein levels of FN,Col-Ⅲ,Ajuba,and YAP1 were up-regulated in the DM and the HG groups(P<0.05),but significantly down-regulated in the DM+rAAV-BMP7 group(P<0.05).RT-qP-CR results demonstrated that the mRNA levels of Ajuba and YAP1 were higher in the DM group and significantly lower in the DM+rAAV-BMP7 group(P<0.05).CONCLUSION:The overexpression of BMP7 can ameliorate renal fibrosis in rats with DKD.This effect is likely mediated by the down-regulation of Ajuba,reduction of YAP1 expression,and subse-quent inhibition of ECM deposition.

10.
Chinese Pharmacological Bulletin ; (12): 2385-2389, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013659

Résumé

Aim To explore the effect of Liuwei Dihuang decoction ( LWDHD) on the expression of β-catenin, E-cadherin,α-SMA, the pathological changes of renal tissue, and the changes of an epithelial-mesen-chymal transformation ( EMT) in renal tissue of rats with unilateral ureteral obstruction ( UUO ) . Methods Forty-eight SPF grade SD rats were randomly divided into sham group ( Sham), model group ( UUO), Liuwei Dihuang decoction low, medium, and high groups ( LWDHD 3. 375, 6. 75, 13. 5 g · kg

11.
Chinese Pharmacological Bulletin ; (12): 1840-1846, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013689

Résumé

Aim To investigate the protective effect of baicalin on renal fibrosis in rats with diabetic nephrop- III (Col- III) athy (DN) and to investigate its mechanism of action. Methods A rat model of diabetic nephropathy was constructed. The rats were randomly divided into control group, model group, baicalin low dose group, baicalin medium dose group, baicalin high dose group and metformin group, with 10 rats in each group. Except for the control group, all rats in each group were fed with streptozotocin 65 mg • kg -

12.
Chinese Pharmacological Bulletin ; (12): 1534-1540, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013744

Résumé

Aim To study the protective effect of eplerenone on the contralateral kidney in pregnant rats with chronic kidney disease (CKD) and its mechanism. Methods Female Wistar rats were randomly divided into sham-operation group, sham-operation pregnancy group, model group and eplerenone group. The rats in the model group and eplenone group had ligation unilateral ureter, and the rats in the eplenone group were treated with 100 mg • kg

13.
Chinese Pharmacological Bulletin ; (12): 1222-1227, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013767

Résumé

Diabetic nephropathy (DN) is one of the most common and serious microvascular complications in patients with diabetes mellitus. Diabetic renal fibrosis ( DRF) is a major pathological change in the development of DN. In recent years the incidence of renal fibrosis (RF) has remained high. For diabetic patients, RF may expose them to kidney transplantation or even death, which brings a great burden to themselves and their families. Therefore, learning the pathogenesis and the current treat ment status of DRF is crucial for the treatment of the disease and the development of new drugs. Here we review the general situa¬tion of DN, the general situation, molecular mechanism, and the treatment of DRF,looking forward to providing a reference for the research and treatment of DRF.

14.
Chinese Pharmacological Bulletin ; (12): 549-554, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013841

Résumé

Aim To investigate the effect of aloin, an aloe extract,on fibrosis of renal tubular epithelial cells (HK-2) induced by TGF-β and the underlying molecular mechanism. Methods The experiment included a control group,TGF-β induced group,TGF-β + Aloin 50 or 100 μmol • L

15.
Article Dans Anglais | WPRIM | ID: wpr-1009928

Résumé

OBJECTIVES@#To explore the mechanism of transforming growth factor-β1 (TGF-β1) induce renal fibrosis.@*METHODS@#Renal fibroblast NRK-49F cells treated with and without TGF-β1 were subjected to RNA-seq analysis. DESeq2 was used for analysis. Differentially expressed genes were screened with the criteria of false discovery rate<0.05 and l o g 2 F C >1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for differentially expressed genes. Genes encoding transcription factors were further screened for differential expression genes. Then, the expression of these genes during renal fibrosis was verified using unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis model and a public gene expression dataset (GSE104954).@*RESULTS@#After TGF-β1 treatment for 6, 12 and 24 h, 552, 1209 and 1028 differentially expressed genes were identified, respectively. GO analysis indicated that these genes were significantly enriched in development, cell death, and cell migration. KEGG pathway analysis showed that in the early stage of TGF-β1 induction (TGF-β1 treatment for 6 h), the changes in Hippo, TGF-β and Wnt signaling pathways were observed, while in the late stage of TGF-β1 induction (TGF-β1 treatment for 24 h), the changes of extracellular matrix-receptor interaction, focal adhesion and adherens junction were mainly enriched. Among the 291 up-regulated differentially expressed genes treated with TGF-β1 for 6 h, 13 genes (Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Ahr, Foxo1, Myc, Tcf7, Foxc2, Glis1) encoded transcription factors. Validation in a cell model showed that TGF-β1 induced expression of 9 transcription factors (encoded by Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Myc, Tcf7), while the expression levels of the other 4 genes did not significantly change after TGF-β1 treatment. Validation results in UUO-induced mouse renal fibrosis model showed that Snai1, Irf8, Bhlhe40, Junb, Arid5a, Myc and Tcf7 were up-regulated after UUO, Vdr was down-regulated and there was no significant change in Lef1. Validation based on the GSE104954 dataset showed that IRF8 was significantly overexpressed in the renal tubulointerstitium of patients with diabetic nephropathy or IgA nephropathy, MYC was highly expressed in diabetic nephropathy, and the expressions of the other 7 genes were not significantly different compared with the control group.@*CONCLUSIONS@#TGF-β1 induces differentially expressed genes in renal fibroblasts, among which Irf8 and Myc were identified as potential targets of chronic kidney disease and renal fibrosis.


Sujets)
Souris , Animaux , Humains , Facteur de croissance transformant bêta-1/métabolisme , Néphropathies diabétiques/anatomopathologie , Transcriptome , Transduction du signal , Rein , Obstruction urétérale/anatomopathologie , Fibrose , Facteurs de régulation d'interféron , Facteur de croissance transformant bêta/métabolisme , Protéines de liaison à l'ADN/métabolisme , Facteurs de transcription/métabolisme
16.
Chinese Journal of Nephrology ; (12): 281-290, 2023.
Article Dans Chinois | WPRIM | ID: wpr-994975

Résumé

Objective:To investigate the role of immunoglobulin-like domain-containing receptor 2 (Ildr2) in renal fibrosis induced by ischemia-reperfusion.Methods:Ildr2 knockout mice (KO group) were constructed using CRISPR/Cas9 technology, and wild-type mice were as the control group (WT group). The unilateral renal ischemia-reperfusion (UIR) model (UIR group) was constructed by clamping the left renal pedicle, and was divided into KO-UIR group and WT-UIR group after modeling. Sham operation mice (sham group) were not treated with ischemia. Serum creatinine was measured by creatinine oxidase method. Blood urea nitrogen was detected by the diacetyloxime colorimetric method. The urinary albumin level was measured by enzyme-linked immunosorbent assay, and urinary albumin/creatinine ratio was calculated. HE, PAS and MASSON staining were used to detect the infiltration of inflammatory cells and the degree of fibrosis in renal tissues. The mRNA expression levels of Ildr2, kidney injury-associated molecules neutrophil gelatinase-associated lipocalin ( NGAL) and kidney injury molecule-1 ( KIM-1), fibrosis markers typeⅠcollagen α 1 ( Col1α1), fibronectin 1 ( Fn1), α-smooth muscle actin ( α-SMA) and connective tissue growth factor ( CTGF), as well as inflammation-related molecules macrophage marker F4/80 and monocyte chemoattractant protein-1 ( MCP-1) were detected by real time quantitative PCR (qRT-PCR). The protein levels of Ildr2, α-SMA and Col1α1 were detected by immunofluorescence and Western blotting. Results:(1) qRT-PCR and Western blotting showed that the expression levels of Ildr2 mRNA and protein in UIR group were significantly lower than those in sham group (both P<0.05). (2) There were no significant differences in body weight, serum creatinine, blood urea nitrogen, total cholesterol, low density lipoprotein, high density lipoprotein and triglyceride between KO group and WT group (all P>0.05). qRT-PCR results showed that there were no significant differences in the mRNA expression levels of NGAL, KIM-1, α-SMA, Col1α1, CTGF, Fn1, MCP-1 and F4/80 between KO group and WT group (all P>0.05). Histological staining showed no abnormal inflammatory cell infiltration and interstitial fibrosis between KO group and WT group. (3) Compared with the WT-UIR group, serum creatinine and blood urea nitrogen in the KO-UIR group were significantly higher (both P<0.05). qRT-PCR results showed that the mRNA expression levels of NGAL, F4/80, MCP-1, Col1α1, α-SMA, and CTGF in the KO-UIR group were significantly higher than those in the WT-UIR group (all P<0.05). Immunofluorescence and Western blotting results also showed that the protein expression levels of Col1α1 and α-SMA in the KO-UIR group were significantly higher than those in the WT-UIR group (all P<0.05). Histological staining showed that, compare with WT-UIR group, KO-UIR group had more severe inflammatory infiltration and more collagen fiber deposition. Conclusion:Ildr2 knockout does not cause phenotypic changes in mice under normal physiological conditions. Ildr2 plays a regulatory role in UIR injury, and Ildr2 deletion aggravates the degree of renal fibrosis induced by UIR.

17.
Article Dans Chinois | WPRIM | ID: wpr-995213

Résumé

Objective:To explore any effect of regular aerobic exercise on renal fibrosis and apoptosis in rats with spontaneous hypertension.Methods:Thirty 6-week-old male spontaneously hypertensive rats were randomly divided into a sedentary group (group HS) and an exercise group (group HE). Ten age- and sex-matched Wistar-Kyoto rats formed a control group. The rats in group HE underwent 12 weeks of swimming exercise lasting 60 minutes, five times a week, while the other two groups were kept quiet in their cages. Before and after the training, the tail artery blood pressure of each rat was measured. Renal function was evaluated after the experiment by measuring 24h urine protein, blood urea nitrogen and serum creatinine levels, while the degree of renal interstitial fibrosis was measured using Masson staining and the collagen volume fraction was calculated. The number of apoptotic cells in the renal tubular epithelial tissue was recorded by TUNEL staining and the apoptosis rate was calculated. The expression of renal transforming growth factor β1 (TGF-β1), Smad2/3, Smad7, Bax and Bcl-2 protein were detected using western blotting.Results:After the intervention, the average systolic and diastolic blood pressure and mean arterial pressure of group HS had increased significantly, while those of group HE had decreased significantly, with no significant changes in those measurements among the control group. Compared with the control group, after the intervention, the average blood pressure, 24h urinary protein, blood urea nitrogen and serum creatinine, as well as the cell apoptosis rate and expression of TGF-β1, Smad2/3 and Bax had increased significantly, and that of Smad7 and Bcl-2 had decreased significantly in group HS. And compared with group HS, in group HE the average blood pressure, 24h urinary protein, blood urea nitrogen, serum creatinine and the cell apoptosis rate had decreased significantly, together with the expression of TGF-β1, Smad2/3 and Bax, but the average expression of Smad7 and Bcl-2 had increased significantly.Conclusion:Regular aerobic exercise can relieve the renal dysfunction seen in spontaneous hypertension, at least in rats, by inhibiting renal fibrosis and apoptosis.

18.
Article Dans Chinois | WPRIM | ID: wpr-996506

Résumé

ObjectiveTo observe the protective effect of Baoshen prescription against renal fibrosis and explore its underlying mechanism through network pharmacology, molecular docking, and in vivo experiments. MethodAll mice were randomly divided into sham surgery group, model group, low-, medium-, and high-dose Baoshen prescription groups, and a benazepril hydrochloride group. Unilateral ureteral obstruction (UUO) was performed to establish a renal fibrosis model, and the administration of Baoshen prescription at low, medium, and high doses (0.455, 0.91, and 1.82 g·kg-1), and benazepril hydrochloride (1.68 mg·kg-1) or distilled water began on the same day as model preparation. Mice in the model group and the sham surgery group were given an equal volume of distilled water. The intervention was carried out once daily for 14 days. Mouse serum levels of blood urea nitrogen (BUN) and creatinine (Cr) were measured. Hematoxylin-eosin (HE) staining and Masson staining were used to observe renal pathological changes. Western blot and immunohistochemistry were used to assess the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and E-cadherin, which are related to renal fibrosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), NOD-like receptor protein 3 (NLRP3), and monocyte chemoattractant protein-1 (MCP-1) in renal tissues. The mechanism of Baoshen prescription in improving renal fibrosis was explored through network pharmacology, molecular docking, and Western blot experiments. ResultCompared with the sham surgery group, the model group showed significantly increased levels of BUN and Cr (P<0.01). The model group exhibited abnormal renal glomerular morphology, loss of tubular brush borders, tubular dilation, and an enlarged area of blue collagen fibers. Mice in the model group showed significantly elevated levels of FN and α-SMA (P<0.01), significantly decreased expression of E-cadherin (P<0.01), and significantly increased expression of TGF-β1, TNF-α, NLRP3, and MCP-1 mRNA (P<0.05, P<0.01). Compared with the model group, the Baoshen prescription groups showed significantly reduced BUN and Cr levels (P<0.01), alleviated renal pathological damage, improved fibrosis, reduced expression of FN and α-SMA (P<0.01), increased E-cadherin expression (P<0.01), and downregulated mRNA expression of TGF-β1, TNF-α, NLRP3, and MCP-1 (P<0.05, P<0.01). Network pharmacology and molecular docking predicted that Baoshen prescription could potentially improve renal fibrosis through the extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pharmacological research showed that compared with the sham surgery group, the model group exhibited significantly increased expression of phosphorylated (p)-ERK and p-p38 (P<0.05, P<0.01). Compared with the model group, medium- and high-dose Baoshen prescription groups showed significantly downregulated expression of p-ERK and p-p38 proteins (P<0.05, P<0.01). ConclusionBaoshen prescription can effectively improve renal fibrosis induced by UUO in mice, and its mechanism of action may be related to the ERK/p38 MAPK signaling pathway.

19.
Article Dans Chinois | WPRIM | ID: wpr-996808

Résumé

ObjectiveTo investigate the effect and mechanism of Dahuang Zhechongwan (DHZCW) on adenine-induced renal fibrosis in rats from the perspective of intestinal flora. MethodThirty-six SD rats were randomly divided into a blank group, a model group, and high-, medium- and low-dose DHZCW groups (0.168, 0.084, 0.042 g·kg-1), and a pirfenidone group (200 mg·kg-1), with 6 rats in each group. Except for those in the blank group, rats in other groups were treated with adenine suspension (250 mg·kg-1) by gavage for 28 days for renal fibrosis model induction. Subsequently, they received drug intervention for 4 weeks. Urine samples were collected from rats in metabolic cages, and renal function indicators including blood urea nitrogen (BUN), urea, creatinine (Crea), cystatin C (Cys C), and 24-hour urine protein (24 h TP) were measured. Kidney samples were collected and subjected to hematoxylin-eosin (HE) staining and Masson's trichrome staining to observe the pathological changes in rat renal tissues. Western blot was used to detect the expression levels of key effector proteins α-smooth muscle actin (α-SMA), type Ⅰ collagen (ColⅠ), and type Ⅲ collagen (ColⅢ) in the kidneys. High-throughput sequencing of 16S rDNA was used to analyze the species diversity of rat intestinal flora. ResultCompared with the blank group, the model group showed increased BUN, urea, Crea, Cys C, and 24 h TP levels (P<0.01). Compared with the model group, the high-, medium-, and low-dose DHZCW groups, as well as the pirfenidone group, showed significant reductions in BUN, urea, Crea, Cys C, and 24 h TP levels (P<0.01), indicating that DHZCW intervention significantly improved renal function. In the model group, renal tissues exhibited significant fibrotic changes, and the protein levels of α-SMA, ColⅠ, and ColⅢ were significantly increased (P<0.01) compared to those in the blank group. Compared with the model group, the high-dose DHZCW group and the pirfenidone group had relatively normal tissue structure, with no significant pathological damage observed. However, fibrotic changes were observed in the medium- and low-dose DHZCW groups, with the changes being more significant in the low-dose group. The protein levels of α-SMA, ColⅠ, and ColⅢ were significantly decreased in the high-, medium-, and low-dose DHZCW groups, as well as the pirfenidone group (P<0.01), indicating that DHZCW effectively reduced abnormal collagen deposition and inhibited renal fibrosis. From the perspective of intestinal flora, at the phylum level, compared with the blank group, the model group showed a significant increase in the abundance of Firmicutes and a decrease in Bacteroidetes, leading to a significant imbalance in their ratio. At the family level, the model group decreased the abundance of Lachnospiraceae, Prevotellaceae, and Bacteroidota_unclassified, and increased the abundance of Ruminococcaceae, Lactobacillaceae, and Oscillospiraceae. At the genus level, the model group showed significantly reduced abundance of Firmicutes_unclassified, Bacteroidota_unclassified, and Prevotellaceae_UCG-001, etc., and increased abundance of UCG-005, Clostridia_UCG-014_unclassified, etc. Compared with the model group, DHZCW effectively reduced the abundance of potential pathogenic bacteria and increased the abundance of beneficial bacteria, regulating the intestinal flora. ConclusionDHZCW can effectively improve renal function and inhibit renal fibrosis, and its mechanism of action may be related to the regulation of intestinal flora.

20.
Article Dans Chinois | WPRIM | ID: wpr-997673

Résumé

Diabetic nephropathy (DN), a major cause of chronic kidney disease (CKD), aggravates the prevalence of end-stage renal disease (ESRD) and threatens human health. The pathogenesis of DN is complex, in which inflammation is a key pathological link in the cascade injury. Therefore, the treatment targeting inflammation helps to delay the progression of DN. NOD-like receptor protein 3 (NLRP3), a classical proteasome, acts as an inducer of innate immune responses. The activated NLRP3 inflammasomes produce and release inflammatory mediators to trigger pyroptosis and uncontrolled autophagy and mediate the stress signals promoting renal fibrosis, thus participating in the development and progression of DN. The NLRP3 inflammasome as a core site inducing inflammation is widely involved in DN progression and may be a novel target. The active components and compound prescriptions of Chinese medicines are increasingly applied in the prevention and treatment of DN. The latest studies have discovered that Chinese medicines can treat DN by regulating the activation of NLRP3 inflammasomes. Although studies have been conducted to explore the mechanism of Chinese medicines in the treatment of DN via NLRP3 inflammasome, the systematic review remains to be carried out. This paper reviews the relevant publications in recent years and introduces the research progress from the assembly and activation of NLRP3 inflammasomes, the mechanism of NLRP3 inflammasomes in the treatment of DN, and the regulation of NLRP3 inflammasomes by Chinese medicines for the prevention and treatment of DN, aiming to lay a foundation for the relevant studies and provide new targets and strategies for the prevention and treatment of DN.

SÉLECTION CITATIONS
Détails de la recherche