Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 201
Filtrer
1.
Rev. obstet. ginecol. Venezuela ; 84(3): 279-288, Ago. 2024. ilus, tab, graf
Article de Espagnol | LILACS, LIVECS | ID: biblio-1570300

RÉSUMÉ

Objetivo: Evaluar el efecto de los exosomas como tratamiento alternativo en la restauración del síndrome genitourinario de la menopausia en pacientes que acuden a una consulta ginecológica, en Valencia, Estado Carabobo, en el período junio - agosto de 2023. Métodos: Estudio prospectivo, descriptivo, exploratorio, incluyó tres casos de mujeres con diagnóstico de síndrome genitourinario de la menopausia. Se evaluó la respuesta en cuanto a los síntomas, examen clínico según el índice de salud vaginal, la satisfacción con el tratamiento y la tolerabilidad. Se aplicó el tratamiento con exosomas: 2 cc con técnica de punto a punto en todas las paredes vaginales y 1 cc en el vestíbulo, en 3 sesiones, con intervalo de 15 días. Resultados: La edad de las pacientes estuvo entre 53 y 56 años, con un promedio de tiempo de menopausia de 6,6 años. Previo al tratamiento, había un nivel alto de irritación vaginal (100 %), dolor en el introito (100 %), sequedad vaginal, dispareunia, hipersensibilidad y las no relaciones sexuales (66,67 %). Postratamiento predominó la ausencia de los síntomas: sequedad vaginal, dispareunia, hipersensibilidad y dolor en introito (100 %); irritación vaginal y no relaciones sexuales (66,67 %) (p = 0,0001). La mediana del índice de salud vaginal previa fue 13 (10 ­ 13) y posterior fue 18 (17 ­ 20) (p = 0,0476). La satisfacción y tolerabilidad fue de 66,67 %. Una paciente refirió dolor leve. Conclusión: La terapia con exosomas es eficaz para reducir los síntomas y signos del síndrome genitourinario de la menopausia, y bien tolerado(AU)


Objective: To evaluate the effect of exosomes as an alternative treatment in the restoration of genitourinary syndrome of menopause in patients attending a gynecological consultation in Valencia, Carabobo State, in the period June - August 2023. Methods: A prospective, descriptive, exploratory study included three cases of women diagnosed with genitourinary syndrome of menopause. Response was assessed in terms of symptoms, clinical examination according to vaginal health index, satisfaction with treatment and tolerability. Treatment with exosomes was applied: 2 cc with point-to-point technique on all vaginal walls and 1 cc in the vestibule, in 3 sessions, with an interval of 15 days. Results: The age of the patients was between 53 and 56 years, with a mean menopause time of 6.6 years. Prior to treatment, there was a high level of vaginal irritation (100%), pain in the introitus (100%), vaginal dryness, dyspareunia, hypersensitivity and non-sexual intercourse (66.67%). Post-treatment, the absence of symptoms predominated: vaginal dryness, dyspareunia, hypersensitivity and pain in the introitus (100%); vaginal irritation and no sexual intercourse (66.67%) (p = 0.0001). The median index of previous vaginal health was 13 (10 ­ 13) and subsequent was 18 (17 ­ 20) (p = 0.0476). Satisfaction and tolerability was 66.67%. One patient reported mild pain. Conclusion: Exosome therapy is effective in reducing the symptoms and signs of genitourinary syndrome of menopause, and well tolerated(AU)


Sujet(s)
Humains , Femelle , Adulte , Adulte d'âge moyen , Thérapies complémentaires , Ménopause , Hormonothérapie substitutive , Exosomes , Périménopause , Oestrogènes , Acide hyaluronique
2.
Article de Anglais | WPRIM | ID: wpr-1007909

RÉSUMÉ

OBJECTIVE@#To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).@*METHODS@#The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.@*RESULTS@#The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.@*CONCLUSION@#Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Sujet(s)
Humains , microARN/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Exosomes/métabolisme , Prolifération cellulaire/génétique , Tumeurs colorectales/génétique , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux
3.
Article de Anglais | WPRIM | ID: wpr-1010717

RÉSUMÉ

Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.


Sujet(s)
Humains , Exosomes , Qualité de vie , Vésicules extracellulaires , Marqueurs biologiques , Communication cellulaire , Tumeurs de la bouche
4.
Chinese Journal of Cardiology ; (12): 72-78, 2024.
Article de Chinois | WPRIM | ID: wpr-1045791

RÉSUMÉ

Objective: To investigate the effects of exosome derived from miR-133a-3p engineered human umbilical cord blood mesenchymal stem cells (ucMSC) on myocardial repair after acute myocardial infarction (AMI) in rats. Methods: UcMSC was amplified and cultured in vitro. Lentiviral carrying miR-133a-3p and negative control vectors were transfected into ucMSC. Exosomes secreted by the transfected ucMSC were named miR-133a-3p-Exo and miR-NC-Exo, respectively. The AMI model of rats was established by ligation of the left anterior descending coronary artery. MiR-133a-3p-Exo or miR-NC-Exo were then injected into the border zone of the infarct area. Cardiac function was assessed by echocardiography after twenty-eight days of intervention, and Masson staining was used to evaluate the area of myocardial fibrosis post-AMI. The myocardial apoptosis after infarction was evaluated by TUNEL staining and the angiogenesis after infarction was evaluated by immunofluorescence staining in the current study. Results: Compared with the miR-NC-Exo group, the left ventricular ejection fraction in the miR-133a-3p-Exo group was significantly increased ((47.4%±9.8%) vs. (64.2%±8.9%), P<0.05). While the myocardial fibrosis area ((31.2%±7.3%) vs. (18.0%±1.5%), P<0.01) and the percentage of apoptotic cardiomyocytes ((25.6%±3.6%) vs. (15.1%±4.4%), P<0.05) was significantly reduced in the miR-133a-Exo group. Besides, the expression of CD31 and α-smooth muscle actin (α-SMA) were also increased significantly in the miR-133a-3p-Exo group compared to the miR-NC-Exo group (CD31: (2.9±0.9) vs. (13.9±2.0), P<0.000 1, α-SMA: (3.5±0.9) vs. (11.0±1.6), P<0.000 1). Conclusion: Exosome derived from miR-133a-3p engineered ucMSC effectively inhibited myocardial apoptosis and promoted angiogenesis, thus improving the cardiac function after myocardial infarction in rats.


Sujet(s)
Rats , Humains , Animaux , Exosomes/métabolisme , Débit systolique , Rat Sprague-Dawley , microARN/génétique , Fonction ventriculaire gauche , Infarctus du myocarde/génétique , Cardiomyopathies/métabolisme , Fibrose , Cellules souches mésenchymateuses/métabolisme , Apoptose
5.
Article de Chinois | WPRIM | ID: wpr-1046021

RÉSUMÉ

Diabetic peripheral neuropathy (DPN) is one of the chronic complications of diabetic neuropathy, and also the main cause of chronic wounds and disability. Exosomes and exosomal-microRNAs (miRNAs) are closely related to DPN and participate in the signal transduction and protein expression of the peripheral nervous system by mediating intercellular communication. However, the specific role and mechanism of EVs and exosomal-miRNAs in the occurrence and development of DPN in high-glucose environments are not fully understood. This article reviews the promotion of EVs and exosomal-miRNAs in the occurrence and development of DPN in inhibiting axon growth, promoting inflammatory response, and inducing vascular injury in a high glucose environment.


Sujet(s)
Humains , microARN/génétique , Exosomes/métabolisme , Neuropathies diabétiques/métabolisme , Transduction du signal , Glucose/métabolisme , Diabète
6.
Chinese Journal of Cardiology ; (12): 72-78, 2024.
Article de Chinois | WPRIM | ID: wpr-1046114

RÉSUMÉ

Objective: To investigate the effects of exosome derived from miR-133a-3p engineered human umbilical cord blood mesenchymal stem cells (ucMSC) on myocardial repair after acute myocardial infarction (AMI) in rats. Methods: UcMSC was amplified and cultured in vitro. Lentiviral carrying miR-133a-3p and negative control vectors were transfected into ucMSC. Exosomes secreted by the transfected ucMSC were named miR-133a-3p-Exo and miR-NC-Exo, respectively. The AMI model of rats was established by ligation of the left anterior descending coronary artery. MiR-133a-3p-Exo or miR-NC-Exo were then injected into the border zone of the infarct area. Cardiac function was assessed by echocardiography after twenty-eight days of intervention, and Masson staining was used to evaluate the area of myocardial fibrosis post-AMI. The myocardial apoptosis after infarction was evaluated by TUNEL staining and the angiogenesis after infarction was evaluated by immunofluorescence staining in the current study. Results: Compared with the miR-NC-Exo group, the left ventricular ejection fraction in the miR-133a-3p-Exo group was significantly increased ((47.4%±9.8%) vs. (64.2%±8.9%), P<0.05). While the myocardial fibrosis area ((31.2%±7.3%) vs. (18.0%±1.5%), P<0.01) and the percentage of apoptotic cardiomyocytes ((25.6%±3.6%) vs. (15.1%±4.4%), P<0.05) was significantly reduced in the miR-133a-Exo group. Besides, the expression of CD31 and α-smooth muscle actin (α-SMA) were also increased significantly in the miR-133a-3p-Exo group compared to the miR-NC-Exo group (CD31: (2.9±0.9) vs. (13.9±2.0), P<0.000 1, α-SMA: (3.5±0.9) vs. (11.0±1.6), P<0.000 1). Conclusion: Exosome derived from miR-133a-3p engineered ucMSC effectively inhibited myocardial apoptosis and promoted angiogenesis, thus improving the cardiac function after myocardial infarction in rats.


Sujet(s)
Rats , Humains , Animaux , Exosomes/métabolisme , Débit systolique , Rat Sprague-Dawley , microARN/génétique , Fonction ventriculaire gauche , Infarctus du myocarde/génétique , Cardiomyopathies/métabolisme , Fibrose , Cellules souches mésenchymateuses/métabolisme , Apoptose
7.
Article de Chinois | WPRIM | ID: wpr-1046344

RÉSUMÉ

Diabetic peripheral neuropathy (DPN) is one of the chronic complications of diabetic neuropathy, and also the main cause of chronic wounds and disability. Exosomes and exosomal-microRNAs (miRNAs) are closely related to DPN and participate in the signal transduction and protein expression of the peripheral nervous system by mediating intercellular communication. However, the specific role and mechanism of EVs and exosomal-miRNAs in the occurrence and development of DPN in high-glucose environments are not fully understood. This article reviews the promotion of EVs and exosomal-miRNAs in the occurrence and development of DPN in inhibiting axon growth, promoting inflammatory response, and inducing vascular injury in a high glucose environment.


Sujet(s)
Humains , microARN/génétique , Exosomes/métabolisme , Neuropathies diabétiques/métabolisme , Transduction du signal , Glucose/métabolisme , Diabète
8.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Article de Anglais | LILACS | ID: biblio-1550058

RÉSUMÉ

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Sujet(s)
Néomycine/métabolisme , Néomycine/toxicité , Exosomes/métabolisme , Autophagie/physiologie , Cellules ciliées auditives
9.
Braz. j. biol ; 84: e250556, 2024. ilus
Article de Anglais | LILACS, VETINDEX | ID: biblio-1360208

RÉSUMÉ

Exosomes are 30-120nm bio particles transferred from donor to recipient cells leading to modification in their regulatory mechanisms depending upon the coded message in the form of loaded biomolecule. Cancer cells derived exosomes the true representatives of the parent cells have been found to modify the tumor surrounding/distinct regions and participate in metastasis, angiogenesis and immune suppression. Tis study was aimed to study the effects of tumor mice derived exosomes on the normal mice spleen isolated T cells by using co-culture experiments and flow cytometer analysis. We mainly focused on some of the T cells population and cytokines including IFN-γ, FOXP3+ regulatory T (Treg) cells and KI67 (proliferation marker). Overall results indicated random changes in different set of experiments, where the cancer derived exosomes reduced the IFN-γ expression in both CD4 and CD8 T cells, similarly the Treg cells were also found decreased in the presence of cancer exosomes. No significant changes were observed on the Ki67 marker expression. Such studies are helpful in understanding the role of cancer exosomes in immune cells suppression in tumor microenvironment. Cancer exosomes will need to be validated in vivo and in vitro on a molecular scale in detail for clinical applications.


Os exossomos são biopartículas de 30-120 nm transferidas de células doadoras para células receptoras, levando à modificação em seus mecanismos reguladores, dependendo da mensagem codificada na forma de biomolécula carregada. Verificou-se que exossomos derivados de células cancerosas ­ os verdadeiros representantes das células-mãe ­ modificam as regiões circundantes / distintas do tumor e participam da metástase, angiogênese e imunossupressão. Este estudo teve como objetivo estudar os efeitos de exossomos derivados de camundongos com tumor nas células T isoladas de baço de camundongos normais, usando experimentos de cocultura e análise de citômetro de fluxo. Concentrou-se, principalmente, em algumas populações de células T e citocinas, incluindo IFN-γ, células T reguladoras FOXP3 + (Treg) e KI67 (marcador de proliferação). Os resultados gerais indicaram mudanças aleatórias em diferentes conjuntos de experimentos, em que os exossomos derivados de câncer reduziram a expressão de IFN-γ em células T CD4 e CD8, da mesma forma que as células Treg também foram encontradas diminuídas na presença de exossomos de câncer. Nenhuma mudança significativa foi observada na expressão do marcador Ki67. Esses dados são úteis para a compreensão do papel dos exossomos do câncer na supressão de células do sistema imunológico no microambiente tumoral. Exossomos de câncer precisarão ser validados in vivo e in vitro em escala molecular com detalhes para aplicações clínicas.


Sujet(s)
Animaux , Souris , Exosomes , Microenvironnement tumoral , Système immunitaire , Métastase tumorale , Tumeurs
10.
Acta Physiologica Sinica ; (6): 241-247, 2023.
Article de Chinois | WPRIM | ID: wpr-981001

RÉSUMÉ

Atherosclerosis is a chronic inflammatory disease of vascular walls with a complex etiology. In recent years, the incidence of atherosclerosis continues to increase with obesity and diabetes as major risk factors. As an important metabolic organ in the body, adipose tissue also has a powerful endocrine function. In the case of obesity and diabetes, various cytokines and exosomes derived from adipose tissue mediate organ-organ/cell-cell crosstalk, and are involved in the occurrence and development of various diseases. As an important intercellular communicator, exosomes regulate the pathological process of various cardiovascular diseases and are closely related to atherosclerosis. In this paper, we reviewed the mechanism of adipose-derived exosomes in atherosclerosis with focus on endothelial dysfunction, inflammatory response, lipid metabolism disorder and insulin resistance, hoping to provide reference for the research, diagnosis and treatment of atherosclerosis.


Sujet(s)
Humains , Exosomes/métabolisme , Athérosclérose , Obésité/complications , Tissu adipeux/métabolisme , Insulinorésistance
11.
Chinese Journal of Biotechnology ; (12): 1351-1362, 2023.
Article de Chinois | WPRIM | ID: wpr-981142

RÉSUMÉ

In recent years, mesenchymal stem cell (MSCs)-derived exosomes have attracted much attention in the field of tissue regeneration. Mesenchymal stem cell-derived exosomes are signaling molecules for communication among cells. They are characterized by natural targeting and low immunogenicity, and are mostly absorbed by cells through the paracrine pathway of mesenchymal stem cells. Moreover, they participate in the regulation and promotion of cell or tissue regeneration. As a scaffold material in regenerative medicine, hydrogel has good biocompatibility and degradability. Combining the two compounds can not only improve the retention time of exosomes at the lesion site, but also improve the dose of exosomes reaching the lesion site by in situ injection, and the therapeutic effect in the lesion area is significant and continuous. This paper summarizes the research results of the interaction of exocrine and hydrogel composite materials to promote tissue repair and regeneration, in order to facilitate research in the field of tissue regeneration in the future.


Sujet(s)
Hydrogels/métabolisme , Exosomes/métabolisme , Cicatrisation de plaie , Médecine régénérative , Cellules souches mésenchymateuses/métabolisme
12.
Chinese Journal of Biotechnology ; (12): 1477-1501, 2023.
Article de Chinois | WPRIM | ID: wpr-981149

RÉSUMÉ

Patients with glioblastoma (GBM) generally have a bad prognosis and short overall survival after being treated with surgery, chemotherapy or radiotherapy due to the histological heterogeneity, strong invasive ability and rapid postoperative recurrence of GBM. The components of GBM cell-derived exosome (GBM-exo) can regulate the proliferation and migration of GBM cell via cytokines, miRNAs, DNA molecules and proteins, promote the angiogenesis via angiogenic proteins and non-coding RNAs, mediate tumor immune evasion by targeting immune checkpoints with regulatory factors, proteins and drugs, and reduce drug resistance of GBM cells through non-coding RNAs. GBM-exo is expected to be an important target for the personalized treatment of GBM and a marker for diagnosis and prognosis of this kind of disease. This review summarizes the preparation methods, biological characteristics, functions and molecular mechanisms of GBM-exo on cell proliferation, angiogenesis, immune evasion and drug resistance of GBM to facilitate developing new strategies for the diagnosis and treatment of GBM.


Sujet(s)
Humains , Glioblastome/génétique , Exosomes/métabolisme , microARN/métabolisme , Pronostic , Prolifération cellulaire , Tumeurs du cerveau/génétique , Lignée cellulaire tumorale
13.
Article de Chinois | WPRIM | ID: wpr-981248

RÉSUMÉ

Objective To investigate the effect of human platelet-rich plasma-derived exosomes(PRP-exos)on the proliferation of Schwann cell(SC)cultured in vitro. Methods PRP-exos were extracted by polymerization-precipitation combined with ultracentrifugation.The morphology of PRP-exos was observed by transmission electron microscopy,and the concentration and particle size distribution of PRP-exos were determined by nanoparticle tracking analysis.Western blotting was employed to determine the expression of the marker proteins CD63,CD81,and CD9 on exosome surface and the platelet membrane glycoprotein CD41.The SCs of rats were isolated and cultured,and the expression of the SC marker S100β was detected by immunofluorescence staining.The fluorescently labeled PRP-exos were co-cultured with SCs in vitro for observation of their interaction.EdU assay was employed to detect the effect of PRP-exos on SC proliferation,and CCK-8 assay to detect the effects of PRP-exos at different concentrations(0,10,20,40,80,and 160 μg/ml)on SC proliferation. Results The extracted PRP-exos appeared as uniform saucer-shaped vesicles with the average particle size of(122.8±38.7)nm and the concentration of 3.5×1012 particles/ml.CD63,CD81,CD9,and CD41 were highly expressed on PRP-exos surface(P<0.001,P=0.025,P=0.004,and P=0.032).The isolated SCs expressed S100β,and PRP-exos could be taken up by SCs.PRP-exos of 40,80,and 160 μg/ml promoted the proliferation of SCs,and that of 40 μg/ml showed the best performance(all P<0.01). Conclusions High concentrations of PRP-exos can be extracted from PRP.PRP-exos can be taken up by SCs and promote the proliferation of SCs cultured in vitro.


Sujet(s)
Humains , Rats , Animaux , Exosomes/métabolisme , Plasma riche en plaquettes , Cellules de Schwann , Techniques de coculture , Prolifération cellulaire , Cellules cultivées
14.
Chinese Journal of Biotechnology ; (12): 275-285, 2023.
Article de Chinois | WPRIM | ID: wpr-970374

RÉSUMÉ

The aim of this study was to investigate the therapeutic effects and potential mechanism of c(RGDyK) peptide modified mesenchymal stem cell exosomes loaded with ginsenoside Rg1 (G-Rg1) on ischemic stroke. Thread-tying method was used to establish SD rats transient middle cerebral occlusion model (tMCAO). The model rats were randomly divided into tMCAO group, Exo group, free G-Rg1 group, Exo-Rg1 group and cRGD-Exo-Rg1 group, and sham group was used as control. The infarct volume was measured by 2, 3, 5-triphenyltetrachloride (TTC) staining, the changes of neuron and endothelium were observed by immunofluorescence, and the expression of related proteins was detected by Western blotting. The results showed that cRGD-Exo-Rg1 up-regulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF-1α) by activating PI3K/AKT pathway, thus promoting angiogenesis and neurogenesis, effectively reducing the volume of cerebral infarction and improving neural function. In addition, the delivery of cRGD-Exo-Rg1 to ischemic brain tissue up-regulated the expression of occludin and claudin-5, and reduced the injury of blood-brain barrier. Taken together, cRGD-Exo-Rg1 was effective in the treatment of ischemic stroke by promoting angiogenesis and neurogenesis, which provided experimental evidence for the potential clinical benefits of other neuroprotective therapies.


Sujet(s)
Rats , Animaux , Accident vasculaire cérébral ischémique/traitement médicamenteux , Rat Sprague-Dawley , Phosphatidylinositol 3-kinases , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Exosomes/métabolisme , Ginsénosides/usage thérapeutique
15.
Article de Chinois | WPRIM | ID: wpr-970678

RÉSUMÉ

The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.


Sujet(s)
Animaux , Rats , Apoptose , Chondrocytes , Champs électromagnétiques , Exosomes/physiologie , Cellules souches mésenchymateuses/métabolisme
16.
Chinese Journal of Burns ; (6): 101-105, 2023.
Article de Chinois | WPRIM | ID: wpr-971158

RÉSUMÉ

Since researchers have found that the conditioned medium and exosomes of mesenchymal stem cells (MSCs) had the biological effects equivalent to those of MSCs, MSC exosomes (MSC-Exos), the representative product of MSCs' paracrine effect, have become the research focus of the "cell-free" therapy of MSCs. However, most researchers currently use conventional culture condition to culture MSCs and then isolate exosomes for the treatment of wound or other diseases. Theoretically, the paracrine effect of MSCs is directly associated with the pathological condition of the wound (disease) microenvironment or in vitro culture condition, and their paracrine components and biological effects may be altered with the changes of the wound (disease) microenvironment or in vitro culture condition. Thus, the feasibility of using traditional culture condition to culture MSCs for exosome extraction for the treatment of different diseases without considering the actual situation of the disease to be treated needs further discussion. Therefore, the author suggests that the research of MSC-Exos should consider the microenvironment of the wound (disease) to be treated. as much as possible, otherwise the extracted MSC-Exos may not be "accurate" or may not really achieve the treatment effect of MSCs. In this article, we summarized some thoughts of the author and problems related to the researches about MSC-Exos and wound microenvironment, and hoped to discuss with researchers.


Sujet(s)
Exosomes , Thérapie cellulaire et tissulaire , Milieux de culture conditionnés , Cellules souches mésenchymateuses
17.
Article de Anglais | WPRIM | ID: wpr-971394

RÉSUMÉ

Pancreatic cancer (PC) is a malignant tumor of the digestive tract with poor patient prognosis. The PC incidence is still increasing with a 5-year survival rate of only 10%. At present, surgical resection is the most effective method to treat PC, however, 80% of the patients missed the best time for surgery after they have been diagnosed as PC. Chemotherapy is one of the main treating methods but PC is insensitive to chemotherapy, prone to drug resistance, and is accompanied by many side effects which are related to a lack of specific target. Exosomes are nanoscale vesicles secreted by almost all cell types and can carry various bioactive substances which mediate cell communication and material transport. They are characterized by a low immunogenicity, low cytotoxicity, high penetration potential and homing capacity, and possess the potential of being used as advanced drug carriers. Therefore, it is a hot research topic to use drug-loaded exosomes for tumor therapy. They may alleviate chemotherapy resistance, reduce side effects, and enhance the curative effect. In recent years, exosome drug carriers have achieved considerable results in PC chemotherapy studies.


Sujet(s)
Humains , Exosomes/métabolisme , Vecteurs de médicaments/métabolisme , Tumeurs du pancréas/diagnostic , Antinéoplasiques/usage thérapeutique
18.
Article de Anglais | WPRIM | ID: wpr-971465

RÉSUMÉ

Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.


Sujet(s)
Exosomes/physiologie , Muscles squelettiques/métabolisme , Communication cellulaire , Homéostasie
19.
Article de Chinois | WPRIM | ID: wpr-971495

RÉSUMÉ

OBJECTIVE@#To investigate the mechanism by which arecoline regulates the level of miR-155-5p in macrophage-secreted exosomes to induce the transformation of human oral mucosal fibroblasts (HOMFs) into fibroblast phenotype.@*METHODS@#Exosomes were harvested from human monocytic cell line THP-1 with or without arecoline treatment. The effects of arecoline-treated THP-1 cell culture supernatant (CS), THP-1-derived exosomes (EXO), exosome-depleted THP-1 cell supernatant (NES), miR-155-5p overexpression, and miR-155-5p inhibitor on migration ability of arecoline-treated HOMF cells were examined using Transwell migration assay. The polarization of THP-1 cells was detected using flow cytometry. DCFH-DA was used to detect the level of oxidative stress in the cells with different treatments. The mRNA and protein expressions of α- SMA, type I collagen and SOCS1 in the cells were detected with qRT-PCR and Western blotting.@*RESULTS@#Flow cytometry showed that arecoline-treated THP-1 cells exhibited obvious polarization from M0 to M1. Both the supernatant and exosomes from arecoline-treated THP-1 cells significantly enhanced the migration ability of HOMF cells, increased intracellular oxidative stress, up-regulated the expressions of miR-155- 5p and the mRNA and protein levels of α-SMA and type I collagen, and lowered the mRNA and protein expressions of SOCS1. In HOMF cells treated with exosomes from arecoline- treated THP-1 cells, overexpression of miR-155-5p significantly enhanced cell migration ability and increased cellular expressions of α-SMA and type I collagen, and miR-155-5p inhibitor caused the opposite changes.@*CONCLUSION@#Arecoline can up-regulate miR-155-5p expression in THP-1 cells and inhibit the expression of SOCS1 protein in HOMF cells via the exosome pathway, thus promoting the fibrotic phenotype transformation of HOMF cells.


Sujet(s)
Humains , Exosomes , Arécoline/pharmacologie , Collagène de type I , Fibroblastes , Macrophages , microARN
20.
Article de Anglais | WPRIM | ID: wpr-971590

RÉSUMÉ

Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.


Sujet(s)
Humains , Salive/métabolisme , Marqueurs biologiques/métabolisme , ARN , Exosomes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE