RESUMO
We investigated the effect of methyl jasmonate (MeJA) on the content of asperosaponin VI and the expression of genes involved in its synthesis. Dipsacus aspero seedlings were treated with MeJA at different concentrations of 50, 100, 150, 200 and 300 μmol·L-1, and leaves and roots were sampled following treatment for 1, 3 and 5 days. The content of asperosaponin VI and superoxide anion in the roots, malondialdehyde (MDA) content in leaves and superoxide dismutase were determined. The results show that 150 μmol·L-1 MeJA significantly increased the accumulation of asperosaponin VI in roots. The content of asperosaponin VI was greatest after treatment for 3 days, and was 2.16 times higher than the control. After MeJA treatment, SOD activity decreased and MDA content increased in leaves. Moreover, superoxide anion content in roots increased. The expression of squalene epoxidase (DaSE1) and geranyl diphosphate synthase (DaGPS), key enzymes in the synthesis of asperosaponin VI, were up-regulated compared with the control group. These results indicate that an optimal concentration of 150 μmol·L-1 MeJA increases the accumulation of asperosaponin VI by up-regulating the expression of key enzymes involved in the synthesis of asperosaponin VI, which facilitates resistance to adversity stress stimulated by MeJA.