Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biol. Res ; 55: 30-30, 2022. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403569

RESUMO

BACKGROUND: Xenotransplantation has been primarily performed using fresh donor tissue to study testicular development for about 20 years, and whether the cultured tissue would be a suitable donor is unclear. In this study, we combined testicular culture and xenotransplantation into an integrative model and explored whether immature testicular tissue would survive and continue to develop in this model. METHODS: In the new integrative model group, the testes of neonatal rats on postnatal day 8 (PND 8) were cultured for 4 days ex vivo and then were transplanted under the dorsal skin of castrated nude mice. The xenografted testes were resected on the 57th day after xenotransplantation and the testes of rats in the control group were harvested on PND 69. The survival state of testicular tissue was evaluated from morphological and functional perspectives including H&E staining, immunohistochemical staining of 8-OH-dG, immunofluorescence staining, TUNEL assay, ultrastructural study, gene expression and protein analysis. RESULTS: (a) We found that complete spermatogenesis was established in the testes in the new integrative model group. Compared with the control in the same stage, the seminiferous epithelium in some tubules was a bit thinner and there were vacuoles in part of the tubules. Immunofluorescence staining revealed some ACROSIN-positive spermatids were present in seminiferous tubule of xenografted testes. TUNEL detection showed apoptotic cells and most of them were germ cells in the new integrative model group. 8-OH-dG immunohistochemistry showed strongly positive-stained in the seminiferous epithelium after xenotransplantation in comparison with the control group; (b) Compared with the control group, the expressions of FOXA3, DAZL, GFRα1, BOLL, SYCP3, CDC25A, LDHC, CREM and MKI67 in the new integrative model group were significantly elevated (P < 0.05), indicating that the testicular tissue was in an active differentiated and proliferative state; (c) Antioxidant gene detection showed that the expression of Nrf2, Keap1, NQO1 and SOD1 in the new integrative model group was significantly higher than those in the control group (P < 0.05), and DNA methyltransferase gene detection showed that the expression of DNMT3B was significantly elevated as well (P < 0.05). CONCLUSION: The new integrative model could maintain the viability of immature testicular tissue and sustain the long-term survival in vivo with complete spermatogenesis. However, testicular genes expression was altered, vacuolation and thin seminiferous epithelium were still apparent in this model, manifesting that oxidative damage may contribute to the testicular development lesion and it needs further study in order to optimize this model.


Assuntos
Animais , Masculino , Camundongos , Ratos , Testículo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espermatogênese , Acrosina/metabolismo , Superóxido Dismutase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metiltransferases/metabolismo , Antioxidantes/metabolismo
2.
Biol. Res ; 53: 46, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1131889

RESUMO

BACKGROUND: Kidney cancer is one of the most common cancers in the world. It is necessary to clarify its underlying mechanism and find its prognostic biomarkers. Current studies showed that SHMT2 may be participated in several kinds of cancer. METHODS: Our studies investigated the expression of SHMT2 in kidney cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its co-expression gene by cBioPortal online tool and validated their relationship in A498 and ACHN cells by cell transfection, western blot and qRT-PCR. Besides these, we also explored their prognostic values via the Kaplan-Meier plotter database in different types of kidney cancer patients. RESULTS: SHMT2 was found to be increased in 7 kidney cancer datasets, compared to normal renal tissues. For the cancer stages, ages and races, there existed significant difference in the expression of SHMT2 among different groups by mining of the UALCAN database. High SHMT2 expression is associated with poor overall survival in patients with kidney cancer. Among all co-expressed genes, NDUFA4L2 and SHMT2 had a high co-expression efficient. SHMT2 overexpression led to the increased expression of NDUFA4L2 at both mRNA and protein levels. Like SHMT2, overexpressed NDUFA4L2 also was associated with worse overall survival in patients with kidney cancer. CONCLUSION: Based on above results, overexpressed SHMT2 and its co-expressed gene NDUFA4L2 were all correlated with the prognosis in kidney cancer. The present study might be benefit for better understanding the clinical significance of SHMT2 and provided a potential therapeutic target for kidney cancer in future.


Assuntos
Humanos , Glicina Hidroximetiltransferase/genética , Complexo I de Transporte de Elétrons/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , RNA Mensageiro , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Estadiamento de Neoplasias
3.
Acta cir. bras ; Acta cir. bras;32(7): 550-558, July 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886220

RESUMO

Abstract Purpose: To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. Methods: The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Results: Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Conclusion: Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.


Assuntos
Animais , Masculino , Ratos , Obstrução da Artéria Renal/complicações , Terapia por Ondas Curtas/métodos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/terapia , Precondicionamento Isquêmico/métodos , Rim/irrigação sanguínea , Ratos Sprague-Dawley , Modelos Animais de Doenças
4.
Yao Xue Xue Bao ; (12): 1885-2016.
Artigo em Chinês | WPRIM | ID: wpr-779347

RESUMO

Anaprazole is a proton pump inhibitor clinically used for curing peptic ulcer. A rapid, sensitive and convenient LC-MS/MS method was first established for the determination of anaprazole in human plasma. d3, 13C-anaprazole was used as internal standard (IS). After extraction from human plasma by protein precipitation with acetonitrile, all components were separated on an Extend C18 column (100 mm×4.6 mm, 3.5 μm). The assay was linear over the concentration range of 5.00-3 000 ng·mL-1 (r2 > 0.995). The method was successfully applied to a pharmacokinetic study of 40 mg anaprazole enteric-coated tablets in 14 Chinese healthy volunteers under fasting or high fat diet conditions. Cmax was (1 020±435) ng·mL-1 and AUC0-t was (2 370±754) h·ng·mL-1 under fasting condition. And Cmax was (538±395) ng·mL-1 and AUC0-t was (1 610±650) h·ng·mL-1 under high fat diet condition. The plasma results suggest that the exposure of anaprazole is reduced by the high fat diet.

5.
Biol. Res ; 46(2): 139-146, 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-683990

RESUMO

Studies of developmental effects of mixtures of endocrine disrupters on the male reproductive system are of great concern. In this study, the reproductive effects of the co-administration of di-2-(ethylhexyl) phthalate (DEHP) and genistein (GEN) during pregnancy and lactation were studied in male rat offspring. Pregnant Sprague-Dawley rats were gavaged from gestation day 3 to postnatal day 21 with vehicle control, DEHP 250 mg/kg body weight (bwyday, GEN 50 mg/kg bwday, GEN 400 mg/kg bwday, and two combinations of the two compounds (DEHP 250 mg/kg bwday + GEN 50 mg/kg bwday, DEHP 250 mg/kg bwday + GEN 400 mg/kg bwday). The outcomes studied were general morphometry (weight, AGD), testicular histology, testosterone levels, and expression at the mRNA level of genes involved in steroidogenesis. Organ coefficient, AGD / body weight1/3 י, serum testosterone concentration and genes involved in steroidogenic pathway expression when exposed to DEHP (250mg/kg bwday), GEN(50mg/kg bwday) or GEN(400mg/kg bwday) alone were not significantly different from the control group. When exposed to (DEHP 250mg/kg bwday +GEN 50mg/kg bwday) together during pregnancy and lactation, serum testosterone concentration, epididymis coefficient and Cypal17a1,Scarb1 m RNA expression significantly decreased compared to the control and GEN(50mg/kg bwday). When exposed to (DEHP 250mg/kg bwday +GEN 400mg/kg bwday) together during pregnancy and lactation, AGD / body weight1/3 י, serum testosterone concentration, testis and epididymis coefficient and Star, Cypal17a1 mRNA expression appeared significantly decreased compared to the control and DEHP/GEN single exposure, together with developmental impairment of seminiferous tubules and seminiferous epithelium. Overall, co-administration of DEHP and GEN during gestation and lactation seem to acts in a cumulative manner to induce the most significant alterations in the neonate, especially with GEN at high dose, although the effect of the DEHP-GEN mixture on adult offspring should be observed further.


Assuntos
Animais , Feminino , Masculino , Gravidez , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Genisteína/toxicidade , Genitália Masculina/efeitos dos fármacos , Lactação/efeitos dos fármacos , Fitoestrógenos/toxicidade , Plastificantes/toxicidade , Citocromo P-450 CYP11B2/genética , Exposição Materna/efeitos adversos , Fosfoproteínas/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe B/genética , /genética , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA