RESUMO
Abstract The aim of this study was to investigate the physicochemical and biological properties of an experimental tricalcium silicate-based repair cement containing diclofenac sodium (CERD). For the physicochemical test, MTA, Biodentine and CERD were mixed and cement disc were prepared to evaluate the setting time and radiopacity. Root-end cavity were performed in acrylic teeth and filled with cements to analyze the solubility up to 7 days. Polyethylene tubes containing cements were prepared and calcium ions and pH were measured at 3h, 24h, 72h and 15 days. For the biological test, SAOS-2 were cultivated, exposed to cements extracts and cell proliferation were investigated by MTT assay at 6h, 24h and 48h. Polyethylene tubes containing cements were implanted into Wistar rats. After 7 and 30 days, the tubes were removed and processed for histological analyses. Parametric and nonparametric data were performed. No difference was identified in relation to setting time, radiopacity and solubility. Biodentine released more calcium ion than MTA and CERD; however, no difference between MTA and CERD were detected. Alkaline pH was observed for all cements and Biodentine exhibited highest pH. All cements promoted a raise on cell proliferation at 24h and 48h, except CERD at 48h. Biodentine stimulated cell metabolism in relation to MTA and CERD while CERD was more cytotoxic than MTA at 48h. Besides, no difference on both inflammatory response and mineralization ability for all cement were found. CERD demonstrated similar proprieties to others endodontic cements available.
Resumo O objetivo deste estudo foi investigar as propriedades físico-químicas e biológicas de um cimento reparador experimental à base de silicato de tricálcio contendo diclofenaco de sódio (CERD). Para o teste físico-químico, MTA, Biodentine e CERD foram manipulados e discos de cimentos foram preparados para avaliar o tempo de presa e a radiopacidade. Retrocavidades foram feitas em dentes de acrílico e preenchidas com cimentos para análise de solubilidade por 7 dias. Tubos de polietileno contendo cimentos foram preparados e os íons cálcio e o pH foram mensurados às 3h, 24h, 72h e 15 dias. Para o teste biológico, SAOS-2 foram cultivadas, expostas aos extratos de cimentos e a proliferação celular foi investigada pelo ensaio de MTT às 6h, 24h e 48h. Tubos de polietileno contendo cimentos foram implantados em ratos Wistar. Após 7 e 30 dias, os tubos foram removidos e processados para análises histológicas. Dados paramétricos e não paramétricos foram realizados. Nenhuma diferença foi identificada em relação ao tempo de presa, radiopacidade e solubilidade. Biodentine liberou mais íons de cálcio do que MTA e CERD; no entanto, nenhuma diferença entre MTA e CERD foi detectada. O pH alcalino foi observado para todos os cimentos e o Biodentine exibiu o pH mais alto. Todos os cimentos promoveram aumento na proliferação celular às 24h e 48h, exceto o CERD às 48h. Biodentine estimulou o metabolismo celular em relação ao MTA e CERD, enquanto CERD foi mais citotóxico do que MTA em 48h. Além disso, nenhuma diferença foi encontrada na resposta inflamatória e na capacidade de mineralização para todos os cimentos. CERD demonstrou propriedades semelhantes a outros cimentos endodônticos disponíveis.
RESUMO
Internal inflammatory root resorption (IIRR) can occur as a serious complication of dental trauma which leads to progressive loss of the root structure. An early diagnosis could influence the therapeutic approach, but endodontic treatment becomes a challenge with a doubtful prognosis. The present report described an unusual clinical presentation of an IIRR with perforation resulting from a trauma four years previous. A 15-year-old female patient was presented to our service with pain in the maxillary incisor region. Intraoral radiography revealed a large radioloucent area compatible with IIRR, communicating with the periodontium in the middle third on the distal root face of the right central incisor. The root canal of the right central incisor was chemo-mechanically prepared. The calcium hydroxide (CH) intracanal medication was used and renewed periodically four times. The root canal was filled only in the cervical region to the level of resorption by the inverted gutta-percha cone technique. Clinically and radiographically, all follow-up examinations revealed an asymptomatic tooth, evidencing periapical tissue repair and new bone formation. The tooth remained asymptomatic 3 years afterwards. The present case report supports the idea of executing satisfactory intracanal decontamination by chemo-mechanical preparation, thus creating a favourable environment for tissue repair.