RESUMO
The ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to conduct the qualitative analysis of the monoterpene chemical components from Paeoniae Radix Rubra. Gradient elution was performed on C_(18) HD(2.1 mm×100 mm, 2.5 μm) column with a mobile phase of 0.1% formic acid(A) and acetonitrile(B). The flow rate was 0.4 mL·min~(-1) and the column temperature was 30 ℃. MS analysis was conducted in both positive and negative ionization modes using electrospray ionization(ESI) source. Qualitative Analysis 10.0 was used for data processing. The identification of chemical components was realized by the combination of standard compounds, fragmentation patterns, and mass spectra data reported in the literature. Forty-one monoterpenoids in Paeoniae Radix Rubra extract were identified. Among them, 8 compounds were reported in Paeoniae Radix Rubra for the first time and 1 was presumed to be the new compound 5″-O-methyl-galloylpaeoniflorin or its positional isomer. The method in this study realizes the rapid identification of monoterpenoids from Paeoniae Radix Rubra and provides a material and scientific basis for quality control and further study on the pharmaceutical effect of Paeoniae Radix Rubra.
Assuntos
Cromatografia Líquida , Medicamentos de Ervas Chinesas , Espectrometria de Massas , MonoterpenosRESUMO
As arsenic widely exists in nature and has been used in the pharmaceutical preparations, the traditional Chinese medicine(TCM) with arsenic include realgar(As_2S_2 or As_4S_4), orpiment(As_2S_3), and white arsenic(As_2O_3). Among the above representative medicine, the TCM compound formulas with realgar are utilized extensively. Just in Chinese Pharmacopoeia(2020 edition), there are 37 Chinese patent medicines including realgar. The traditional element analysis focuses on the detection of the total amount of elements, which neglects the study on the speciation and valence of elements. The activity, toxicity, bioavailability, and metabolic pathways of arsenic in vivo are closely related to the existence of its form, and different forms of arsenic have different effects on organisms. Therefore, the study on the speciation and valence of arsenic is of great importance for arsenic-containing TCMs and their compound formulas. This paper reviewed four aspects of the speciation and valence of arsenic, including property, absorption and metabolism, toxicity, and analytical assay.
Assuntos
Arsênio/análise , Arsenicais/análise , Sulfetos , Trióxido de Arsênio , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/análise , Produtos BiológicosRESUMO
Inflammatory bowel diseases (IBD) are non-specific inflammatory diseases of unknown cause, mainly including ulcerative colitis and Crohn’s disease. IBDs have some similarities to peptic ulcer diseases (PUD) in clinical manifestations, histopathological changes and treatment strategies, and therefore pepsin might have a similar effect on both PUD and IBD. Recent studies show that “self-digestion” induced by digestive enzymes, especially trypsin, may play an important role in the development and progression of IBD. This article focuses on the role of mucosal barrier injury induced by trypsin and self-digestion in the formation of digestive ulcer in IBD.
RESUMO
In this paper, a new type of preparation for treatment of initial dry eye disease, thermosensitive in situ gel, was prepared using levocarnitine as a model drug. Poloxamer 407 and poloxamer 188 were used as the gel matrix, and sodium hyaluronate and sodium carboxymethylcellulose were used as bioadhesive materials. Gelation temperature was determined by a rotor method and the prescription was optimized by central composite design-response surface methodology. The pH value, viscosity value and gelation temperature of the optimal prescription were measured. The release of the drug in vitro was examined by dialysis membrane permeation, and retention time of the thermosensitive in situ gel preparation on the rabbit's ocular surface was observed by a slit lamp microscope. The results showed that the dosage of the poloxamer 407 and poloxamer 188 were 20.81% and 3.46%, respectively, and sodium hyaluronate was 0.02%, sodium carboxymethyl cellulose was 0.10% of the optimal formulation of levocarnitine thermosensitive in situ gel. The pH value was 6.90 ± 0.06 at room temperature and the viscosity value started to rise sharply at 27 ℃ of the optimal formulation. The gelation temperature of the optimal preparation before and after dilution by simulated tear fluid were (26.37 ± 0.06) ℃ and (33.57 ± 0.21) ℃, respectively. In the first 240 min, in vitro release rate per unit area of levocarnitine thermosensitive in situ gel was lower than that of solution (P<0.05), and after 600 min, the cumulative release rate of levocarnitine thermosensitive in situ gel could reach more than 80%. The retention time of the thermosensitive in situ gel preparation on rabbit's ocular surface reached about 25 min, at least 5 times as much as that of the solution. The animal experiment was conducted following the National Institutes of Health Guidelines for the use of experimental animals, and approved by the Ethics Committee of the Experimental Animal Center of Beijing University of Chinese Medicine. The levocarnitine thermosensitive in situ gel showed good characteristics and sustained release property and significantly improved the retention time of the drug on the rabbit's ocular surface.
RESUMO
Hepatic fibrosis is an important pathological process in the development of liver cirrhosis and liver cancer from chronic liver damage. So far there is no effective chemical drug in clinic for treatment of hepatic fibrosis. Therefore, the research in anti-hepatic fibrosis drugs is a hot topic. For drugs currently under research and development, most of the mechanisms of action are related to inhibition of factors that could cause or deteriorate liver fibrosis, including activation and proliferation of hepatic stellate cells, inflammation, oxidative stress and production of extracellular matrix, et al. In this review, we briefly analyze targets and drugs related to the mechanisms mentioned above in order to provide a reference to the future research and development of anti-hepatic fibrosis drugs.