RESUMO
Extracellular vesicle-like nanoparticles (EVNs) isolated from edible plants have been shown to have multiple activities, while EVNs from medicinal plants have rarely been reported. In this paper, medicinal parts of medicinal and edible homologous fresh Curcumae Longae Rhizoma (CLR), Lilii Bulbus (LB), Polygonati Rhizoma (PR), and Gastrodiae Rhizoma (GR) are used to squeeze juice to collect EVNs. The physical and chemical properties, antioxidant capacity, and cellular uptake behavior of EVNs are determined. The results show that the particle size of EVNs from different sources ranges from 150 nm to 200 nm, and the polydispersity index (PDI) values of four EVNs are less than 0.2. Different EVNs all contain lipids, proteins, and carbohydrates, but their contents are different. The stability of EVNs is different at 4 ℃ and -80 ℃, among which the CLR-derived EVNs are most stable. Antioxidant experiments confirm that the four EVNs have different antioxidant activities while structural damage of EVNs leads to the reduced antioxidant capacity. Cellular uptake studies prove that four EVNs differ in the uptake capacity by RAW264.7 cells, which is associated with the structural interference of EVNs. The available evidence implies that the specific structure of EVNs may be necessary to their pharmacological activity and transport property.