Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 49(4): 703-713, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974305

RESUMO

ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Assuntos
Bradyrhizobium/isolamento & purificação , Bradyrhizobium/genética , Inoculantes Agrícolas/isolamento & purificação , Inoculantes Agrícolas/genética , Vigna/microbiologia , Filogenia , Simbiose , Brasil , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Genoma Bacteriano , Evolução Molecular , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Genômica , Nódulos Radiculares de Plantas/microbiologia , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/fisiologia , Vigna/fisiologia
2.
Braz. j. microbiol ; 47(4): 783-784, Oct.-Dec. 2016.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469630

RESUMO

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Fixação de Nitrogênio , Vigna/microbiologia , Nodulação
3.
Braz. j. microbiol ; 47(4): 781-782, Oct.-Dec. 2016.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469631

RESUMO

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Assuntos
Bradyrhizobium , Nodulação/genética , Vigna/genética , Vigna/microbiologia , Fixação de Nitrogênio
4.
Braz. j. microbiol ; 43(4): 1604-1612, Oct.-Dec. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-665848

RESUMO

This study evaluated 26 pigeonpea rhizobial isolates according to their cultural characteristics, intrinsic antibiotic resistance, salt and temperature tolerance, carbon source utilization and amylolytic activity. The cultural characterization showed that the majority of them presented the ability to acidify the YMA. Among the 27 isolates evaluated, 25 were able to grow when incubated at 42° C and 11 showed tolerance to 3% (w/v) of NaCl in YMA medium. The patterns of carbon sources utilization was very diverse among the isolates. It was observed the capacity of three strains to metabolize all the carbon sources evaluated and a total of 42% of the bacterial isolates was able to grow in the culture medium supplemented with at least, six carbon sources. The carbon sources mannitol (control) and sucrose were metabilized by all isolates evaluated. The profile of intrinsic resistance to antibiotics showed that the isolates were mostly resistant to streptomycin and ampicillin, but susceptible to kanamycin and chloranphenicol. High amylolytic activity of, at least, four isolates was also demonstrated, especially for isolated 47.3b, which showed the highest enzymatic index. These results indicate the metabolic versatility of the pigeonpea rhizobia, and indicates the isolate 47.3b to further studies regarding the amylase production and characterization.


Assuntos
Antibacterianos/análise , Resistência Microbiana a Medicamentos , Estreptomicina/isolamento & purificação , Variação Genética , Fixação de Nitrogênio , Fenótipo , Rhizobiaceae/fisiologia , Rhizobiaceae/isolamento & purificação , Biotecnologia , Metodologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA