Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 1035-1042, 2021.
Artigo em Chinês | WPRIM | ID: wpr-921843

RESUMO

It is very important for epilepsy treatment to distinguish epileptic seizure and non-seizure. In this study, an automatic seizure detection algorithm based on dual density dual tree complex wavelet transform (DD-DT CWT) for intracranial electroencephalogram (iEEG) was proposed. The experimental data were collected from 15 719 competition data set up by the National Institutes of Health (NINDS) in Kaggle. The processed database consisted of 55 023 seizure epochs and 501 990 non-seizure epochs. Each epoch was 1 second long and contained 174 sampling points. Firstly, the signal was resampled. Then, DD-DT CWT was used for EEG signal processing. Four kinds of features include wavelet entropy, variance, energy and mean value were extracted from the signal. Finally, these features were sent to least squares-support vector machine (LS-SVM) for learning and classification. The appropriate decomposition level was selected by comparing the experimental results under different wavelet decomposition levels. The experimental results showed that the features selected in this paper were different between seizure and non-seizure. Among the eight patients, the average accuracy of three-level decomposition classification was 91.98%, the sensitivity was 90.15%, and the specificity was 93.81%. The work of this paper shows that our algorithm has excellent performance in the two classification of EEG signals of epileptic patients, and can detect the seizure period automatically and efficiently.


Assuntos
Humanos , Algoritmos , Eletroencefalografia , Epilepsia/diagnóstico , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA