Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1543-1552, 2015.
Artigo em Chinês | WPRIM | ID: wpr-240556

RESUMO

Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.


Assuntos
Bacillus subtilis , Genética , Fisiologia , Redes Reguladoras de Genes , Engenharia Metabólica , Esporos Bacterianos , Fisiologia
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 527-34, 2009.
Artigo em Inglês | WPRIM | ID: wpr-634652

RESUMO

Human interleukin-15 (hIL-15) is an important cytokine to activate endothelial cells and can be regulated by many other cytokines. The aim of this study is to examine the ability of interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) to induce the production of human interleukin-15 (hIL-15) and IL-15 receptor (IL-15Ralpha) by human umbilical vein endothelial cells (HUVECs). The data are summarized as follows: 1. Northern blot revealed that IL-15 mRNA was up-regulated by IFN-gamma and TNF-alpha. 2. Intracellular IL-15 protein was visualized by fluorescence microscopy, whereas the expression of IL-15 on the surface of HUVECs was detected by fluorescence activated cell sorting (FACS), and no detectable IL-15 in the medium was verified by ELISA. 3. IL-15Ralpha was detected on the surface of HUVECs by FACS after IFN-gamma and TNF-alpha stimulation, whereas Western blotting revealed that the elevated expression on surface IL-15Ralpha was not due to the increased protein expression. The conclusion demonstrated from our results is that IFN-gamma and TNF-alpha play an important role in regulating the expression of IL-15 and IL-15Ralpha on the surface of HUVECs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA