RESUMO
This study aims to explore the chemical composition of Rehmanniae Radix braised with mild fire and compare the effect of processing method on the chemical composition of Rehmanniae Radix. To be specific, ultra-high performance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to screen the chemical constituents of Rehmanniae Radix. The chemical constituents were identified based on the relative molecular weight and fragment ions, literature information, and Human Metabolome Database(HMDB). The ion peak area ratio of each component before and after processing was used as the index for the variation. SIMCA was employed to establish principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) models of different processed products. According to the PCA plot, OPLS-DA plot, and VIP value, the differential components before and after the processing were screened out. The changes of the content of differential components with the processing method were analyzed. A total of 66 chemical components were identified: 57 of raw Rehmanniae Radix, 55 of steamed Rehmanniae Radix, 55 of wine-stewed Rehmanniae Radix, 51 of repeatedly steamed and sundried Rehmanniae Radix Praeparata, 62 of traditional bran-braised Rehmanniae Radix, and 63 of electric pot-braised Rehmanniae Radix. Among them, the 9 flavonoids of braised Rehmanniae Radix were from Citri Reticulatae Pericarpium. PCA suggested significant differences in the chemical composition of Rehmanniae Radix Praeparata prepared with different processing methods. OPLS-DA screened out 32 chemical components with VIP value >1 as the main differential components. Among the differential components, 9 were unique to braised Rehmanniae Radix(traditional bran-braised, electric pot-braised) and the degradation rate of the rest in braised(traditional bran-braised, electric pot-braised) or repeatedly steamed and sundried Rehmanniae Radix was higher than that in the steamed or wine-stewed products. The results indicated the chemical species and component content of Rehmanniae Radix changed significantly after the processing. The 32 components, such as rehmapicrogenin, martynoside, jionoside D, aeginetic acid, hesperidin, and naringin, were the most important compounds to distinguish different processed products of Rehmanniae Radix. The flavonoids introduced by Citri Reticulatae Pericarpium as excipient may be the important material basis for the effectiveness of braised Rehmanniae Radix compared with other processed products.