RESUMO
@#After years of development, the advantages of computer-assisted orthognathic surgery have been widely recognized. However, the clinical application of this technology is challenging. Each step may generate errors from data acquisition, computer-assisted diagnosis, and computer-assisted surgical design, causing errors to be transferred from the virtual surgical plan to the operation. The accumulation and amplification of errors will affect the final surgical effect. Currently, digital devices, such as intraoral scanners, are being explored for error control, utilizing automation methods and algorithms, and implementing personalized bone positioning methods. Moreover, there are still many problems that have not been fully resolved, such as precise simulation of postoperative soft tissue, functional assessment of mandibular movement, and absorbable internal fixation materials. Fully understanding computer-assisted orthognathic surgery's limitations could provide direction for optimizing existing methods while helping clinicians avoid risks and maximize its advantages to achieve the best outcome. Many emerging and cutting-edge technologies, such as personalized titanium plates, artificial intelligence, and surgical robots, will further promote the development of this discipline. We can expect future optimization of digital orthognathic surgical technology by innovations in automation, intelligence, and personalization.