Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 44(7): 682-687, July 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-595697

RESUMO

We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.


Assuntos
Animais , Bovinos , Ratos , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Regeneração Nervosa/fisiologia , Receptores de Fator de Crescimento Neural/análise , /análise , Células de Schwann/metabolismo , Polaridade Celular , Forma Celular , Células Cultivadas , Colágeno Tipo IV/análise , Imuno-Histoquímica , Teste de Materiais , Microscopia Eletrônica de Varredura , Polímeros/química , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/imunologia , /imunologia , Nervo Isquiático , Coloração e Rotulagem , Células de Schwann/citologia
2.
Braz. j. med. biol. res ; 42(2): 179-188, Feb. 2009. ilus, graf
Artigo em Inglês | LILACS | ID: lil-506879

RESUMO

The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.


Assuntos
Animais , Feminino , Ratos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Peptídeos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encefalomielite Autoimune Experimental/metabolismo , Microscopia Eletrônica de Transmissão , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Esclerose Múltipla/metabolismo , Plasticidade Neuronal/fisiologia , Ratos Endogâmicos Lew , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Sinaptofisina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA