Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Artigo em Chinês | WPRIM | ID: wpr-1023771

RESUMO

Objective To investigate the effects of force on mechanical stability of FLNa-Ig21/αⅡbβ3-CT complex and the regulation mechanism.Methods The FLNa-Ig21/αⅡbβ3-CT crystal structures were taken from the PDB database.The stability of the complexes in a physiological environment as well as the unfolding path and mechanical stability induced by mechanical forces were analyzed using equilibrium and steered molecular dynamics simulations.Results During the equilibration,the survival rate of most salt bridge and hydrogen bonds was below 0.5,and the interactions between FLNa-Ig21 and αⅡbβ3-CT was relatively weak.During stretching at a constant velocity,the complex could withstand a tensile force of 70-380 pN,and its mechanical strength depended on the force-induced dissociation path.Under a constant force of 0-60 pN,the complexes exhibited a slipping-bond trend,and the force increase facilitated the breakage of the R995-D723 salt bridge and the activation of αⅡbβ3 integrin.Conclusions The force-induced allostery of αⅡbβ3-MP enhanced the complex mechanical strength and delayed FLNa-Ig21 dissociation from αⅡbβ3-CT.After breaking through the 20 pN threshold,force positively regulated the activation of αⅡbβ3 integrin.These results provide insights into the molecular mechanism of αⅡbβ3 activation and the development of related targeted drugs.

2.
Artigo em Chinês | WPRIM | ID: wpr-1017638

RESUMO

Investigating the structural characteristics of proton tautomers is of great significance for understanding organic reactions and biochemical processes.In this study,a method based on ion mobility mass spectrometry combined with ab initio molecular dynamics calculations was proposed.The structures of proton tautomers were determined by comparing the experimental and theoretical collision-induced dissociation(CID)mass spectrograms of different proton tautomers.Ion mobility mass spectrometry was used to separate proton tautomerism produced during ionization.The CID mass spectra of each isomer could be obtained after mobility separation.The quantum chemical mass spectrometry(QCXMS)program based on ab initio molecular dynamics calculations was used to calculate the fragmentation process and obtain the theoretical CID mass spectra.The results of experiment and calculation showed that this method effectively solved the issue of difficult identification of proton tautomers.This method was also of great significance for the study of ionization mechanism and organic reaction process using mass spectrometry.

3.
Artigo em Chinês | WPRIM | ID: wpr-1020921

RESUMO

Objective To investigate the effects of puerarin on myocardial ischemia-reperfusion injury and its mecha-nism.Methods Molecular docking and dynamics simulation were utilized to predict the binding potential of puerarin and SIRT1.A myocardial ischemia-reperfusion model was established in SD rats by ligating the anterior descending branch of the left coronary artery.The protective effect of puerarin on myocardial injury was observed,and the therapeutic effect of puerarin was compared after inhibition of SIRT1 expression.The infarct volume was detected using 2,3,5-triphenyltetrazolium chloride(TTC)staining.The apoptosis rate and SIRT1 expression of cardiomyocytes were detected by using TUNEL combined with im-munofluorescence.Transmission electron microscope was used to observe the myocardial ultrastructure.Western blot was per-formed to detect the expression of ferroptosis-related proteins.Results Molecular docking studies confirmed the formation of stable complexes between puerarin and SIRT1.Puerarin treatment significantly increased myocardial ischemia-reperfusion injury through upregulation of SIRT1,SLC7A11 and GPX4 expression,and downregulation of IREB2 expression in rats.The protec-tive effect of puerarin on myocardium was abolished once SIRT1 protein expression was inhibited.Conclusion Molecular doc-king and molecular dynamics simulation techniques can accurately predict the interaction of puerarin,and the main target SIRT1.Puerarin inhibits ferroptosis by activating SIRT1 pathway,thereby alleviating myocardial ischemia-reperfusion injury.

4.
Artigo em Chinês | WPRIM | ID: wpr-1029924

RESUMO

Objective:To investigate the molecular biological mechanism of Bw07 allele and its transferase alteration carried by a proband of ABw07 subtype.Methods:A 2-year-old male child was selected as the research object. The peripheral blood of the proband and his parents was identified for ABO blood type by the test tube method, and the ABO subgroup PCR-SSP detection and ABO gene sequencing were performed on the three individuals to determine their blood type genotypes. Finally, the effect of the p.Arg352Gln mutation on Bw07 transferase was verified by virtual mutation, DUET structure prediction, molecular dynamics analysis, and in vitro cellular experiments.Results:The serological phenotypes of the proband and his mother were ABw and Bw, respectively, while his father was normal A. The ABO subgroup PCR-SSP assay identified the three genotypes as Bw07/A, Bw07/O, and A/A, respectively.Sanger sequencing further verified that the proband and his mother carried the Bw07 gene, and virtual mutation showed that the intermolecular forces were weakened by the R352Q mutation. DUET predicted that this p.Arg352Gln mutation could affect the thermodynamic stability of Bw07 transferase. Molecular dynamics analysis confirmed that the alteration of thermodynamic stability was mainly related to the appearance of large fluctuations in the amino acid backbone atoms in the 125-133, 193-198 and 336-354 regions, and in vitro cellular experiments further verified the weakened antigen synthesis of Bw07 transferase.Conclusion:The formation of the ABw07 phenotype is associated with the mutation of the highly conserved Arg352 to Gln in Bw07 transferase.

5.
Artigo em Chinês | WPRIM | ID: wpr-1030502

RESUMO

Objective To predict the core targets and action pathways of Hedysari Radix based on UPLC-MS/MS and network pharmacology methods,and to verify the results of network pharmacology by molecular docking and molecular dynamics techniques.This article aims to investigate immune regulation mechanism of effective components absorbed into blood from Hedysari Radix.Methods Qualitative quantification of effective components absorbed into blood from Hedysari Radix were operated by using UPLC-MS/MS technique.The corresponding targets of effective components absorbed into blood from Hedysari Radix were screened by TCMSP and HERB databases.Targets of immune-related disease were obtained through DisGeNET,OMIM,TTD,and MalaCards databases.The network of"components absorbed into blood from Hedysari Radix-immune-related diseases"was then constructed.GO and KEGG enrichment analysis and mapped the PPI network were performed.Molecular docking and molecular dynamics techniques were applied for validation.Results A total of 8 prototype components absorbed into blood,synergistically acting on 101 targets,were identified by UPLC-MS/MS.They mediated 538 biological processes including immune response,positive regulation of gene expression,receptor binding,and cytokine activity.Meanuhile,116 signaling pathways,such as HIF-1,Toll-like receptor,JAK-STAT,T cell receptor,PI3K-Akt,and FoxO etc.were involved.The core targets were MAPK14,PTGS2,MMP9,PPARG,CCND1,etc..The results of molecular docking showed that formononetin and calycosin had strong docking binding activity with MAPK14.And molecular dynamics simulations further demonstrated that the binding between MAPK14 and formononetin or calycosin had good structural stability and binding affinity.Conclusion The results of serum pharmacochemistry,network pharmacology and molecular dynamics were verified to reveal the material basis and mechanism of Hedysari Radix in regulating immunity.The aim of this study is to provide scientific basis for its immunomodulatory mechanism.

6.
Artigo em Chinês | WPRIM | ID: wpr-1039094

RESUMO

ObjectiveIt was reported that the transthyretin (TTR) has a neuroprotective effect on Alzheimer’s disease (AD), which is manifested by the ability of TTR to inhibit the pathological aggregation of amyloid beta protein (Aβ). In this work, we investigated the mechanism of the interactions between TTR and Aβ at the molecular level to reveal the neuroprotective effect of TTR on AD. MethodsProtein-protein docking was used to explore the models of interaction between different structural forms of TTR and Aβ, and molecular dynamics simulation was further applied to investigate the dynamic process of the interaction between the two. ResultsBoth TTR tetramer and monomer can interact with Aβ monomer, and the thyroxine-binding channel of TTR tetramer is the main binding site of Aβ monomer. In addition, the EF helix and EF loop of TTR tetramer were also able to bind Aβ monomer. When the TTR tetramer dissociates, the hydrophobic site of the internal TTR monomer is exposed, which has a strong affinity for Aβ monomer. For the interaction between Aβ aggregates and TTR, a higher degree of aggregation can be formed between TTR monomer and Aβ aggregates due to the β-sheet-rich property of TTR monomer and Aβ aggregates, which may therefore reduce the cytotoxicity of Aβ aggregates. ConclusionBoth TTR tetramer and monomer can inhibit Aβ aggregation by “sequestering” Aβ monomer, while TTR monomer can reduce the cytotoxicity of Aβ aggregates by forming large co-aggregation with Aβ aggregates. This work can provide an important theoretical basis for the design and discovery of anti-AD drugs based on the neuroprotective effects of TTR.

7.
São Paulo; s.n; s.n; 2024. 190 p tab, graf.
Tese em Português | LILACS | ID: biblio-1562569

RESUMO

As leishmanioses são doenças negligenciadas que afetam mais de um bilhão e meio de pessoas ao redor do mundo, principalmente nos países em desenvolvimento, provocando grandes impactos socioeconômicos. Os fármacos disponíveis para o tratamento dessas doenças são ineficazes e apresentam graves efeitos adversos. O processo de pesquisa de novos fármacos envolve, entre outras coisas, a seleção de alvos bioquímicos essenciais para a sobrevivência e desenvolvimento do agente causador. Neste sentido, a Sirtuína 2, uma enzima epigenética com atividade hidrolase essencial para a sobrevivência dos parasitas do gênero Leishmania se apresenta como um alvo validado na busca de novos fármacos contra essas parasitoses. O planejamento de fármacos baseado na estrutura do receptor requer o conhecimento da estrutura tridimensional da proteína alvo. Desta forma, a elucidação estrutural e um estudo minucioso das Sirtuínas das várias espécies do gênero Leishmania apresenta-se como uma importante abordagem na aplicação desta estratégia na busca por agentes quimioterápicos. Até o momento, na família Trypanosomatidae, a única estrutura tridimensional resolvida experimentalmente de uma enzima Sirtuína 2 é a da espécie L. infantum. Assim, este trabalho aplicou a abordagem de Modelagem Comparativa utilizando o software Modeller na construção de modelos da Sir2rp1 das espécies L. infantum, L. major e L. braziliensis, cujas sequências de aminoácidos foram extraídas do banco de dados UNIProt. Os modelos construídos foram validados por meio da função de escore DOPE do Modeller e dos servidores PROCHECK, MolProbity e QMEAN, avaliando sua qualidade estereoquímica e seu enovelamento. Os ligantes naturais da enzima foram sobrepostos nos modelos construídos por alinhamento estrutural utilizando o software PyMol e os complexos validados foram submetidos a simulações de Dinâmica Molecular através do pacote GROMACS. Os complexos refinados foram então analisados por meio dos softwares PyMol e LigPlotPlus e dos pacotes GROMACS e gmx_MMPBSA, e foram estudados os sítios de ligação dos substratos e os resíduos de aminoácidos relevantes envolvidos em sua ligação e reconhecimento. A Modelagem Comparativa da Sirtuína 2 humana e seus homólogos das espécies L. infantum, L. major e L. braziliensis, as simulações de Dinâmica Molecular realizadas com os modelos enzimáticos construídos e validados complexados com seus ligantes naturais, os cálculos de energia de interação entre os modelos e seus substratos e o estudo estrutural comparativo realizado entre eles nos fornecem uma base teórica para a busca de novos inibidores da Sirtuína 2 que sejam mais seletivos e potentes contra as enzimas parasitárias, abrindo caminho para o desenvolvimento de candidatos a fármacos leishmanicidas mais seguros e eficazes


Leishmaniasis are neglected diseases that affect more than one and a half billion people around the world, mainly in developing countries, causing major socioeconomic impacts. The drugs available for the treatment of these diseases are ineffective and have serious adverse effects. The process of researching new drugs involves, among other things, the selection of biochemical targets essential for the survival and development of the causative agent. In this sense, Sirtuin 2, an epigenetic enzyme with hydrolase activity essential for the survival of parasites of the Leishmania genus, presents itself as a validated target in the search for new drugs against these parasites. Structure-Based Drug Design requires knowledge of the three-dimensional structure of the target protein. In this way, structural elucidation and a detailed study of Sirtuins from various species of the genus Leishmania presents itself as an important approach in the application of this strategy in the search for chemotherapeutic agents. To date, in the Trypanosomatidae family, the only experimentally resolved three-dimensional structure of a Sirtuin 2 enzyme is that of the species L. infantum. Thus, this work applied the Comparative Modeling approach using the Modeller software in the construction of Sir2rp1 models of the species L. infantum, L. major and L. braziliensis, whose amino acid sequences were retrieved from the UNIProt database. The constructed models were validated using Modeller's DOPE score function and the PROCHECK, MolProbity and QMEAN servers, evaluating their stereochemical quality and folding. The enzyme's natural ligands were superimposed on the built models by structural alignment using the PyMol software and the validated complexes were subjected to Molecular Dynamics simulations using the GROMACS package. The refined complexes were then analyzed using the PyMol and LigPlotPlus softwares and the GROMACS and gmx_MMPBSA packages, and the substrate binding sites and relevant amino acid residues involved in their binding and recognition were studied. The Comparative Modeling of human Sirtuin 2 and its homologues from the species L. infantum, L. major and L. braziliensis, the Molecular Dynamics simulations carried out with the constructed and validated enzymatic models complexed with their natural ligands, the interaction energy calculations between the models and their substrates and the comparative structural study carried out between them provide us with a theoretical basis for the search for new Sirtuin 2 inhibitors that are more selective and potent against the parasitic enzymes, paving the way for the development of safer and more effective leishmanicidal drug candidates


Assuntos
Preparações Farmacêuticas/análise , Leishmaniose/patologia , Sirtuínas/análise , Simulação de Dinâmica Molecular/estatística & dados numéricos , Doenças Negligenciadas/complicações , Epigenômica/classificação , Leishmania/classificação
8.
Indian J Biochem Biophys ; 2023 Apr; 60(4): 320-330
Artigo | IMSEAR | ID: sea-221642

RESUMO

Dyes are becoming more widely used around the world wide, but there is no effective bioremediation approach for removing them completely from the environment. Several dyes are mentioned to be degraded through bacteria; however, it's still unknown how the particular enzymes act throughout the dye degradation. The behavior and function of these enzymes in the biodegradation of azo dyes (Textile dyes) had been investigated experimentally by the numbers of the researchers, however, the molecular mechanisms remain unclear. Therefore, the interaction mechanisms of textile dye (methyl orange) with laccase from B. subtilis were explored through molecular docking and molecular dynamics simulations, the three selected dyes (methyl orange, malachite green, and acid blue 62) that interact positively with laccase on the basis of their maximum binding energy, molecular docking results indicate that one of the three dyes is more stable as a target for degradation through Bacillus subtilis laccase. Therefore, subsequent research focused solely on one substrate: methyl orange. Molecular Dynamics simulation study was applied after the molecular docking to determine the interaction between laccases and methyl orange dyes. The trajectory was proved with root mean square deviation and root mean square fluctuation analysis. According to the molecular dynamics simulation results, laccase-methyl orange complexes remain stable during the catalytic reaction. So, this study demonstrates how laccase is involved in methyl orange bioremediation.

9.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550813

RESUMO

Leishmaniasis continues to be a neglected tropical disease, affecting people and animals and causing significant economic losses. Therefore, there is interest in the study and evaluation of new drug targets. In fact, it has been shown that by interfering with lysine-reading proteins such as bromodomain (BMD) there is a decrease in parasite survival. In this study, we researched the dynamics and energetics of the Leishmania donovani BMD in complex with bromosporin, which is considered to be a pan-inhibitor of BMDs, with the aim of understanding the molecular recognition mechanism. Molecular dynamics (MD) and non-equilibrium free energy calculation guided by steered molecular dynamics (SMD) simulations showed that the BMD has three flexible amino acid regions and bromosporin exhibiting various recognition states during the interaction. These results corroborate the promiscuity of bromosporin for energetically favourable sites, with the possibility of expanding its inhibition to other bromodomains. Furthermore, these results suggest that Van der Waals interactions have more relevance for complex recognition and residues ASN-87 and TRP-93 are key in forming hydrophobic and H-bond interactions, respectively. This research provides new insights for understanding the recognition mechanism, dynamics and energetics of the complex for the development of new therapeutic strategies.


La leishmaniasis sigue siendo una enfermedad tropical desatendida, que afecta a personas y animales y causa importantes pérdidas económicas. De ahí el interés por estudiar y evaluar nuevas dianas farmacológicas. De hecho, se ha demostrado que al interferir con proteínas lectoras de lisina como el bromodominio ("bromodomain", BMD) se produce una disminución de la supervivencia del parásito. En este artículo estudiamos la dinámica y la energética del BMD de Leishmania donovani en complejo con bromosporina, que se considera un pan-inhibidor de BMD, con el objetivo de comprender el mecanismo de reconocimiento molecular. Las simulaciones de dinámica molecular (DM) y el cálculo de energía libre de no-equilibrio guiado por dinámica molecular de estiramiento (DMS) mostraron que BMD tiene tres regiones de aminoácidos flexibles y la bromosporina presenta varios estados de reconocimiento durante la interacción. Estos resultados corroboran la promiscuidad de la bromosporina por sitios energéticamente favorables, siendo posible expandir su inhibición a otros bromodominios. Además, los resultados sugieren que las interacciones de Van der Waals tienen más relevancia para el reconocimiento del complejo y los residuos ASN-87 y TRP-93 son clave en la formación de interacciones hidrofóbicas y de puentes de hidrógeno, respectivamente. Esta investigación proporciona nuevos conocimientos para comprender el mecanismo de reconocimiento molecular, la dinámica y la energética del complejo para el desarrollo de nuevas estrategias terapéuticas.


A leishmaniose continua a ser uma doença tropical negligenciada, que afeta os seres humanos e os animais e causa perdas econômicas significativas. Daí o interesse em estudar e avaliar novos alvos de medicamentos. De fato, a interferência com proteínas leitoras de lisina, como o bromo domínio ("bromodomain", BMD), tem demonstrado diminuir a sobrevivência do parasita. Neste trabalho, estudamos a dinâmica e a energética do BMD de Leish-mania donovani em complexo com a bro-mosporina, considerada um pan-inibidor da BMDs, com o objetivo de compreender o mecanismo de reconhecimento molecular. As simulações de dinâmica molecular (MD) e cálculo de energia livre de não-equilíbrio guiada por dinâmica molecular esticamento (MDS) mostraram que o BMD tem três regiões de aminoácidos flexíveis e que a bromosporina apresenta vários estados de reconhecimento durante a interação. Esses resultados corroboram a promiscuidade da bromosporina para locais energeticamente favoráveis, possibilitando a expansão de sua inibição para outros bromodomínios. Além disso, os resultados sugerem que as interações de Van der Waals são mais relevantes no momento do reconhecimento do complexo e os resíduos ASN-87 e TRP-93 são fundamentais na formação de interações hidrofóbicas e de ligações de hidrogênio, respectivamente. Essa pesquisa fornece novos insights para compreender o mecanismo de reconhecimento, a dinâmica e a energética do complexo para o desenvolvimento de novas estratégias terapêuticas.

10.
Artigo em Inglês | WPRIM | ID: wpr-1010569

RESUMO

This study aims to gain insight into the DNA-specific recognition mechanism of c-Myb transcription factor during the regulation of cell early differentiation and proliferation. Therefore, we chose the chicken myeloid gene, mitochondrial import protein 1 (mim-1), as a target to study the binding specificity between potential dual-Myb-binding sites. The c-Myb-binding site in mim-1 is a pseudo-palindromic sequence AACGGTT, which contains two AACNG consensuses. Simulation studies in different biological scenarios revealed that c-Myb binding with mim-1 in the forward strand (complex F) ismore stable than that inthereverse strand (complex R). The principal component analysis (PCA) dynamics trajectory analyses suggested an opening motion of the recognition helices of R2 and R3 (R2R3), resulting in the dissociation of DNA from c-Myb in complex R at 330 K, triggered by the reduced electrostatic potential on the surface of R2R3. Furthermore, the DNA confirmation and hydrogen-bond interaction analyses indicated that the major groove width of DNA increased in complex R, which affected on the hydrogen-bond formation ability between R2R3 and DNA, and directly resulted in the dissociation of DNA from R2R3. The steered molecular dynamics (SMD) simulation studies also suggested that the electrostatic potential, major groove width, and hydrogen bonds made major contribution to the DNA‍-specific recognition. In vitro trials confirmed the simulation results that c-Myb specifically bound to mim-1 in the forward strand. This study indicates that the three-dimensional (3D) structure features play an important role in the DNA-specific recognition mechanism by c-Myb besides the AACNG consensuses, which is beneficial to understanding the cell early differentiation and proliferation regulated by c-Myb, as well as the prediction of novel c-Myb-binding motifs in tumorigenesis.


Assuntos
Simulação de Dinâmica Molecular , Consenso , DNA , Hidrogênio
11.
Acta Pharmaceutica Sinica ; (12): 118-126, 2023.
Artigo em Chinês | WPRIM | ID: wpr-964295

RESUMO

Molecular dynamics simulation technology relies on Newtonian mechanics to simulate the motion of molecular system of the real system by computer simulation. It has been used in the research of self-assembly processes illustration and macroscopic performance prediction of self-assembly nano-drug delivery systems (NDDS) in recent years, which contributes to the facilitation and accurate design of preparations. In this review, the definitions, catalogues, and the modules of molecular dynamics simulation techniques are introduced, and the current status of their applications are summarized in the acquisition and analysis of microscale information, such as particle size, morphology, the formation of microdomains, and molecule distribution of the self-assembly NDDS and the prediction of their macroscale performances, including stability, drug loading capacity, drug release kinetics and transmembrane properties. Moreover, the existing applications of the molecular dynamic simulation technology in the formulation prediction of self-assembled NDDS were also summarized. It is expected that the new strategies will promote the prediction of NDDS formulation and lay a theoretical foundation for an appropriate approach in NDDS studies and a reference for the wider application of molecular dynamics simulation technology in pharmaceutics.

12.
Artigo em Chinês | WPRIM | ID: wpr-1019767

RESUMO

Objective Network pharmacology and molecular docking and molecular dynamics techniques were used to investigate the mechanism of action of Alhagi sparsifolia Shap.in the treatment of sepsis and to perform animal experimental verification.Methods First,we screened the effective ingredients and their action targets of Alhagi sparsifolia Shap.,meanwhile,screened relevant action targets for the treatment of sepsis,constructed a protein interaction(PPI)network,and performed topology analysis to draw a TCM disease target network diagram.Second,Kyoto Encyclopedia of genes and genomes enrichment analysis was performed for core targets in the network diagram,along with gene ontology functional enrichment analysis.This was followed by molecular docking and molecular dynamics simulation experiment validation of the core targets.Finally,mice were used for the verification of animal experiments.Results Thirty active components of Alhagi sparsifolia Shap.were screened out,and the top 5 ranked by degree value were quercetin,(-)-epigallocatechin,(-)-Epigallocatechin Gallate,genistein,kaempferol and epigallocatechin with 196 action targets;2144 disease-related targets for sepsis,105 targets for Alhagi sparsifolia Shap.-sepsis intersection,and the core targets were TNF,IL-6,AKT1,VEGFA,CASP3,IL-1β Et al.PI3K-Akt,TNF,HIF-1,AGE-RAGE,IL-17 and other signaling pathways are involved to mediate inflammatory responses,apoptosis and other biological processes to exert therapeutic effects on sepsis.Molecular docking results showed that camelina flavanoids bound equally well to each key target,among which the conformations with the lowest binding energy were(-)-Epigallocatechin Gallate-IL-6 and quercetin-IL-6.Molecular dynamics simulations were performed on the two pairs of complexes,and the results indicated that the stable binding could be achieved through a combination of electrostatic,van der Waals potential,and hydrogen bonding interactions.Animal experiments confirmed that Alhagi sparsifolia Shap.could inhibit the activation of PI3K/Akt signaling pathway,decrease the protein expression of Caspase-3,VEGF and reduced peripheral blood inflammatory factors secretion of TNF-α、IL-1βand IL-6,alleviating inflammatory injury in tissues and organs.Conclusion The therapeutic effect of Alhagi sparsifolia Shap.on sepsis is achieved through multi biological processes,multi targets,and multi pathways.It provides a certain theoretical basis for the clinical application of camel spines as well as sepsis treatment.

13.
Chinese Journal of Biotechnology ; (12): 3336-3350, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007961

RESUMO

Zearalenone is one of the most widely polluted Fusarium toxins in the world, seriously endangering livestock and human health. Zearalenone hydrolase (ZHD) derived from Clonostachys rosea can effectively degrade zearalenone. However, the high temperature environment in feed processing hampers the application of this enzyme. Structure-based rational design may provide guidance for engineering the thermal stability of enzymes. In this paper, we used the multiple structure alignment (MSTA) to screen the structural flexibility regions of ZHD. Subsequently, a candidate mutation library was constructed by sequence conservation scoring and conformational free energy calculation, from which 9 single point mutations based on residues 136 and 220 were obtained. The experiments showed that the thermal melting temperature (Tm) of the 9 mutants increased by 0.4-5.6 ℃. The S220R and S220W mutants showed the best thermal stability, the Tm of which increased by 5.6 ℃ and 4.0 ℃ compared to that of the wild type. Moreover, the thermal half-inactivation time at 45 ℃ were 15.4 times and 3.1 times longer, and the relative activities were 70.6% and 57.3% of the wild type. Molecular dynamics simulation analysis showed that the interaction force at and around the mutation site was enhanced, contributing to the improved thermal stability of ZHD. The probability of 220-K130 hydrogen bond of the mutants S220R and S220W increased by 37.1% and 19.3%, and the probability of K130-D223 salt bridge increased by 30.1% and 12.5%, respectively. This work demonstrated the feasibility of thermal stability engineering strategy where the structural and sequence alignment as well as free energy calculation of natural enzymes were integrated, and obtained ZHD variants with enhanced thermal stability, which may facilitate the industrial application of ZHD.


Assuntos
Humanos , Hidrolases , Zearalenona , Tricotecenos , Biblioteca Gênica , Ligação de Hidrogênio
14.
Artigo em Chinês | WPRIM | ID: wpr-1008884

RESUMO

The binding of talin-F0 domain to ras-related protein 1b (Rap1b) plays an important role in the formation of thrombosis. However, since talin is a force-sensitive protein, it remains unclear whether and how force regulates the talin-F0/Rap1b interaction. To explore the effect of force on the binding affinity and the dynamics mechanisms of talin-F0/Rap1b, molecular dynamics simulation was used to observe and compare the changes in functional and conformational information of the complex under different forces. Our results showed that when the complex was subjected to tensile forces, there were at least two dissociation pathways with significantly different mechanical strengths. The key event determining the mechanical strength difference between the two pathways was whether the β4 sheet of the F0 domain was pulled away from the original β1-β4 parallel structure. As the force increased, the talin-F0/Rap1b interaction first strengthened and then weakened, exhibiting the signature of a transition from catch bonds to slip bonds. The mechanical load of 20 pN increased the interaction index of two residue pairs, ASP 54-ARG 41 and GLN 18-THR 65, which resulted in a significant increase in the affinity of the complex. This study predicts the regulatory mechanism of the talin-F0/Rap1b interaction by forces in the intracellular environment and provides novel ideas for the treatment of related diseases and drug development.


Assuntos
Simulação de Dinâmica Molecular , Talina
15.
Artigo em Chinês | WPRIM | ID: wpr-1008902

RESUMO

As one of the traditional computer simulation techniques, molecular simulation can intuitively display and quantify molecular structure and explain experimental phenomena from the microscopic molecular level. When the simulation system increases, the amount of calculation will also increase, which will cause a great burden on the simulation system. Coarse-grained molecular dynamics is a method of mesoscopic molecular simulation, which can simplify the molecular structure and improve computational efficiency, as a result, coarse-grained molecular dynamics is often used when simulating macromolecular systems such as drug carrier materials. In this article, we reviewed the recent research results of using coarse-grained molecular dynamics to simulate drug carriers, in order to provide a reference for future pharmaceutical preparation research and accelerate the entry of drug research into the era of precision drug design.


Assuntos
Simulação de Dinâmica Molecular , Portadores de Fármacos
16.
São Paulo; s.n; s.n; 2023. 153 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1437804

RESUMO

Proteínas tirosina-fosfatase (PTPs) possuem papel fundamental na regulação da transdução de sinais e estão envolvidas em diversos processos fundamentais do ciclo celular. As Cdc25 (Cell Division Cycle 25) são fosfatases duais encontradas em todos os organismos eucarióticos e atuam em checkpoints do ciclo celular, permitindo ou inibindo o prosseguimento deste. Este grupo de proteínas pertence à classe de PTPs com atividade baseada em cisteína, apresenta domínio catalítico altamente conservado assim como o motivo catalítico, P-loop. Devido sua função, as Cdc25 são consideradas possíveis alvos terapêuticos para tratamento de câncer e sua interação com pequenas moléculas e inibidores tem sido investigada de forma que análises estruturais e de ligação das Cdc25 com inibidores podem elucidar aspectos importantes do mecanismo de ação destes além de direcionar para o desenho racional de fármacos. Interações cátion-π são interações intra ou intermoleculares não-covalentes que ocorrem entre uma espécie química catiônica, como o grupo guanidino de argininas, e uma das faces de um sistema π rico em elétrons, como dos anéis indólicos de triptofanos. Apesar de pouco discutidas na literatura, quando em comparação às interações não-covalentes mais convencionais, do ponto de vista energético as interações cátion-π são tão importantes na estruturação de proteínas quanto às ligações de hidrogênio ou pontes salinas. De fato estas interações são observadas com frequência em estruturas proteicas resolvidas. O domínio catalítico da Cdc25B possui diversas argininas expostas em sua superfície e um único resíduo de triptofano localizado na região C-terminal flexível, muito próximo do sítio catalítico da proteína. A flexibilidade de proteínas ou de regiões proteicas apresenta importante papel no reconhecimento entre biomoléculas participantes de vias de sinalização e tem sido muito estudada atualmente. Aqui, simulações de dinâmica molecular, experimentos de 1H-15N HSQC RMN, ensaios de cinética de inibição e de ancoragem molecular, evidenciam a existência de contatos cátion-π transientes na superfície de um importante membro da família das Cdc25, a Cdc25B, e de sítios de interação entre inibidores testados e a proteína com destaque a sítios na proximidades do P-loop, região próxima ao C-terminal desordenado, onde se demonstra estabilidade da interação com os pequenos ligantes


Protein tyrosine phosphatase (PTPs) play a fundamental role in the regulation of signal transduction and are involved in several fundamental processes of the cell cycle. Cdc25 (Cell Division Cycle 25) are dual phosphatases found in all eukaryotic organisms and act at checkpoints of the cell cycle, allowing or inhibiting its progression. This group of proteins belongs to the class of PTPs with cysteine-based activity, presenting a highly conserved catalytic domain as well as the catalytic motif, P-loop. Due to their function, Cdc25 are considered possible therapeutic targets for cancer treatment and their interaction with small molecules and inhibitors has been investigated so that structural and binding analyzes of Cdc25 with inhibitors can elucidate important aspects of their mechanism of action besides directing to rational drug design. Cation-π interactions are non-covalent intra- or intermolecular interactions that occur between a cationic chemical species, such as the guanidino group of arginines, and one of the faces of an electron-rich system, such as the indole rings of tryptophans. Although little discussed in the literature, when compared to more conventional non-covalent interactions, from the energetic point of view, cation-π interactions are as important in the structuring of proteins as hydrogen bonds or salt bridges. In fact, these interactions are frequently observed in solved protein structures. The catalytic domain of Cdc25B has several arginines exposed on its surface and a single tryptophan residue located in the flexible C-terminal region, very close to the catalytic site of the protein. The flexibility of proteins or protein regions plays an important role in the recognition between biomolecules participating in signaling pathways and has been extensively studied today. Here, molecular dynamics simulations, 1H-15N HSQC NMR experiments, inhibition kinetics and molecular anchoring assays, evidence the existence of transient cation-π contacts on the surface of an important member of the Cdc25 family, Cdc25B, and of sites of interaction between tested inhibitors and the protein, with emphasis on sites in the vicinity of the P-loop, a region close to the disordered C-terminus, where stability of the interaction with the small ligands is demonstrated


Assuntos
Fosfatases cdc25/análise , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular/classificação
17.
Braz. j. biol ; 83: 1-15, 2023. ilus, graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468914

RESUMO

In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in [...].


No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente [...].


Assuntos
Apigenina/análise , Apigenina/uso terapêutico , Centaurea/química , Fenômenos Químicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
18.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469130

RESUMO

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


Resumo No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente aquoso. As propriedades ADME e a análise de previsão de toxicidade da axilarina também a recomendaram como um candidato a medicamento seguro. Além disso, as investigações in vivo e in vitro são essenciais para garantir a atividade anti-SARS-CoV-2 de todos os compostos bioativos, particularmente a axilarina, para encorajar o uso preventivo de Centaurea jacea contra infecções por Covid-19.

19.
Braz. j. biol ; 83: e247604, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339370

RESUMO

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


Resumo No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente aquoso. As propriedades ADME e a análise de previsão de toxicidade da axilarina também a recomendaram como um candidato a medicamento seguro. Além disso, as investigações in vivo e in vitro são essenciais para garantir a atividade anti-SARS-CoV-2 de todos os compostos bioativos, particularmente a axilarina, para encorajar o uso preventivo de Centaurea jacea contra infecções por Covid-19.


Assuntos
Humanos , Preparações Farmacêuticas , Centaurea , COVID-19 , Inibidores de Proteases , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , SARS-CoV-2
20.
Braz. J. Pharm. Sci. (Online) ; 59: e22690, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505850

RESUMO

Abstract Improving vaccine immunity and reducing antigen usage are major challenges in the clinical application of vaccines. Microneedles have been proven to be painless, minimally invasive, highly efficient, and have good patient compliance. Compared with traditional transdermal drug delivery, it can effectively deliver a large-molecular-weight drug into the skin, resulting in a corresponding immune response. However, few studies have examined the relationship between microneedle loading dose and immune effects. In this study, the hyaluronic acid (HA) conical and pyramidal dissolving microneedles were prepared by the two-step vacuum drying method, respectively. The model drug ovalbumin (OVA) was added to HA to prepare dissolving microneedles with different loading amounts. The mass ratios of HA to OVA were 5:1, 5:3, and 5:5. The mechanical properties of the dissolving microneedles were characterized using nanoindentation and in vitro puncture studies. The immune effects of the matrix and drug content were studied in Sprague-Dawley (SD) rats. Finally, the diffusion behavior of OVA and the binding mode of HA and OVA in the microneedles were simulated using Materials Studio and Autodocking software. The experimental results showed that the conical microneedles exhibited better mechanical properties. When the mass ratio of HA to OVA was 5:3, the immune effect can be improved by 37.01% compared to subcutaneous injection, and achieved a better immune effect with relatively fewer drugs. This conclusion is consistent with molecular simulations. This study provides theoretical and experimental support for the drug loading and efficacy of microneedles with different drug loadings


Assuntos
Injeções Subcutâneas/efeitos adversos , Preparações Farmacêuticas/análise , Vacinas/análise , Imunização/classificação , Testes Mecânicos/instrumentação , Ácido Hialurônico/agonistas , Antígenos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA