Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Braz. j. med. biol. res ; 57: e13796, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1568973

RESUMO

Previous studies show that glycogen synthase kinase 3β (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).

2.
Artigo em Chinês | WPRIM | ID: wpr-1006268

RESUMO

ObjectiveTo observe the effects of the South African herb Hoodia gordonii (HG) on glucolipid metabolism in diabetic db/db mice and explore the possible mechanisms of HG on the liver of db/db mice based on the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/factor forkhead protein O1 (FoxO1) signaling pathway. MethodA total of 30 db/db mice were randomly divided into five groups according to fasting blood glucose: model group, metformin group (0.195 g·kg-1), and low dose (0.39 g·kg-1), medium dose (0.78 g·kg-1), and high dose (1.56 g·kg-1) HG groups, with six m/m mice in each group, and another six m/m mice were set as normal group. The mice in the normal and model groups were given saline of 9 mL·kg-1 by gavage. Body weight, water intake, and fasting blood glucose of the mice in each group were measured weekly. After six weeks of continuous administration, serum insulin (FINS), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine (CREA) were measured, and liver sections were embedded and stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and oil red O. Protein expression of PI3K p85, p-Akt, and p-FoxO1 in liver was detected by immunohistochemistry. The mRNA expression of PI3K, Akt, and FoxO1 in liver tissue was detected by real-time polymerase chain reaction (Real-time PCR). ResultAfter six weeks of administration intervention, it was found that fasting blood glucose was significantly downregulated in mice in the three HG groups (P<0.05). The level of islet resistance index was significantly reduced in both the low and medium dose HG groups (P<0.05). The expression levels of TC, TG, and LDL were reduced in all HG groups (P<0.05, P<0.01). Pathologically, HG could alleviate hepatocyte steatosis, reduce the volume and content of lipid droplets in liver, and increase the distribution of glycogen granules in liver to some extent in mice. Immunohistochemical assays revealed that PI3K p85 protein expression was significantly increased in the low, medium, and high dose HG groups compared with the model group (P<0.01). p-Akt protein expression was significantly increased in the medium and high dose HG groups (P<0.05, P<0.01). p-FoxO1 protein expression was significantly increased in the low, medium, and high dose HG groups (P<0.05, P<0.01). Compared with the model group, PI3K mRNA was increased in low dose, medium dose, and high dose HG groups (P<0.05), and Akt mRNA was increased in high dose HG group (P<0.05). FoxO1 mRNA was decreased in low dose, medium dose, and high dose HG groups (P<0.05). ConclusionHG can ameliorate the disorder of glucolipid metabolism in db/db mice, which may be related to its activation of the hepatic PI3K/Akt/FoxO1 signaling pathway.

3.
Artigo em Chinês | WPRIM | ID: wpr-1006519

RESUMO

Objective@#To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.@*Methods@#The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.@*Results@#A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.@*Conclusion@#RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.

4.
Artigo em Chinês | WPRIM | ID: wpr-1006554

RESUMO

ObjectiveTo explore the mechanism of Wenyang Jieyu prescription in regulating hippocampal neuron apoptosis and improving synaptic plasticity in the mouse model of depression induced by maternal separation combined with restraint stress. MethodThe mice on postnatal day 0 (PD0) were randomly assigned into a control group (n=10) and a modeling group (n=50). Maternal separation combined with restraint stress was adopted to establish the mouse model of depression, and the modeled mice were randomized into model, Wenyang prescription, Jieyu prescription, Wenyang Jieyu prescription, and fluoxetine groups (n=10) on the weaning day (PD21). From PD21 to PD111, the mice were fed with the diets mixed with corresponding medicines. The sucrose preference test, open field test, O-maze test, and novel object recognition test were then conducted to evaluate the depression, memory, and learning abilities of mice. Immunohistochemistry (IHC) was employed to measure the atomic absorbance (AA) of postsynaptic density protein 95 (PSD95) in the hippocampus. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to detect the apoptosis of hippocampal neurons. Western blot was employed to determine the protein levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase receptor B/tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated protein kinase B/protein kinase B (p-Akt/Akt), phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cysteinyl aspartate-specific proteinase-3 (Caspase-3), synaptophysin (Syn), and PSD95. ResultCompared with the control group, the modeling decreased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.01). Furthermore, it decreased the expression of PSD95, increased the neuron apoptosis in the hippocampus (P<0.01), down-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and up-regulated the protein levels of Bax and Caspase-3 (P<0.05) in the hippocampus. Compared with the model group, Wenyang Jieyu prescription and fluoxetine increased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). Moreover, the drugs increased the expression of PSD95, reduced the neuron apoptosis (P<0.01), up-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and down-regulated the protein levels of Bax and Caspase-3 (P<0.01). ConclusionWenyang Jieyu prescription outperformed Wenyang prescription and Jieyu prescription in the treatment of the depressive behavior induced by maternal separation combined with restraint stress in mice. It exerted the therapeutic effect by reducing the hippocampal neuron apoptosis and improving the synaptic plasticity via the BDNF/Akt/mTOR pathway.

5.
Artigo em Chinês | WPRIM | ID: wpr-1006560

RESUMO

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

6.
Artigo em Chinês | WPRIM | ID: wpr-1006578

RESUMO

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

7.
Artigo em Chinês | WPRIM | ID: wpr-1016837

RESUMO

ObjectiveTo observe the effect of modified Tianwang Buxindan (MTBD) on the skin of sleep-deprived (SD) mice and investigate its mechanism. MethodSixty 2-month-old female Kunming mice were randomly divided into a blank group, a model group, a vitamin C (VC, 0.08 g·kg-1), and MTBD low-, medium-, and high-dose groups (6.5, 12.5, 25 g·kg-1). Except for the blank group, the other groups were subjected to SD mouse model induction (using multiple platform water environment method for 18 hours of sleep deprivation daily from 15:00 to next day 9:00), continuously for 14 days, and caffeine (CAF, 7.5 mg·kg-1) was injected intraperitoneally from the 2nd week onwards, continuously for 7 days. While modeling, the blank group and the model group were administered with normal saline (0.01 mL·g-1), and the other groups received corresponding drugs for treatment. On the day of the experiment, general observations were recorded (such as body weight, spirit, fur, and skin). After sampling, skin tissue pathological changes were observed under an optical microscope using hematoxylin-eosin (HE) and Masson staining methods. Skin thickness and skin moisture content were measured. Biochemical assay kits were used to detect skin hydroxyproline (HYP) content, skin and serum superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels in mice. Western blot was used to detect skin tissue type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (Akt), p-Akt, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and nuclear factor (NF)-κB protein expression. ResultCompared with the blank group, the model group showed varying degrees of changes. In general, signs of aging such as reduced body weight (P<0.01), listlessness, dull fur color, and formation of wrinkles on the skin appeared. Tissue specimen testing revealed skin thinning, flattening of the dermoepidermal junction (DEJ), and reduced collagen fibers under the optical microscope. Skin thickness and moisture content decreased, skin tissue HYP content significantly decreased (P<0.01), skin and serum SOD activity significantly decreased (P<0.01), and MDA content significantly increased (P<0.01). Serum IL-6, TNF-α, and IL-1β levels significantly increased (P<0.01). Skin ColⅠ, ColⅢ, p-PI3K/PI3K, p-Akt/Akt, Nrf2, and HO-1 protein expression significantly decreased (P<0.05, P<0.01), and NF-κB expression increased (P<0.01). Compared with the model group, the VC group and the MTBD low-dose group showed increased skin moisture content, HYP content, SOD activity, and ColⅠ, ColⅢ, p-PI3K/PI3K protein expression (P<0.05, P<0.01), and decreased serum MDA content (P<0.05). In addition, a decrease in serum IL-6 and IL-1β levels was detected in the MTBD low-dose group (P<0.05), while the above indicators in the MTBD medium- and high-dose groups improved (P<0.05, P<0.01). ConclusionSleep deprivation accelerates the aging process of the skin in SD model mice. MTBD can improve this phenomenon, exerting anti-inflammatory and antioxidant effects, and its mechanism of action may be related to the activation of the PI3K/Akt/Nrf2 signaling pathway.

8.
Artigo em Chinês | WPRIM | ID: wpr-1016841

RESUMO

ObjectiveKey microRNAs (miRNAs) of colorectal adenoma (CRA) were identified and analyzed by bioinformatics methods, and differentially expressed genes (DEGs) were screened to construct regulatory relationships. The mechanism of Xiezhuo Jiedu recipe in preventing CRA was speculated and verified by animal experiments. MethodThe miRNAs dataset GSE50194 was obtained from the Gene Expression Omnibus (GEO) database of intestinal mucosal tissue of CRA patients, and the differentially expressed miRNAs were screened by GEO2R and Excel. TargetScan, miRTarbase, and miRDB databases were used to predict the target genes of the differentially expressed miRNAs, and an intersection was obtained. Key DEGs were screened through the STRING database and Cytoscape software, and the TRRUST database was used to predict downstream binding transcription factors (TFs). The mRNA intersection was enriched by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) in the Metascape database. DIANA TOOLS were applied to perform KEGG enrichment analysis of key miRNAs, and the key signaling pathways were selected for animal experiments. In animal experiments, the CRA mice model was established by using sodium glycan sulfate (DSS) drinking combined with intraperitoneal injection of azomethane oxide (AOM), and Xiezhuo Jiedu recipe and aspirin were given by intragastric administration at the same time. The experiment lasted for nine weeks. The pathological changes in intestinal tissue were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of miR-34a-5p in adenoma tissue. Protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phosphoryl-PI3K (p-PI3K), phosphoryl-Akt (p-Akt), and B cell lymphoma (Bcl)-2 were detected by Western blot. The expression of Cyclin D1 (CCND1) was detected by immunohistochemistry (IHC). In situ terminal transferase labeling (TUNEL) was used to detect apoptosis of adenoma tissue cells. ResultThe GEO database screened the GSE50194 dataset, and miR-34a-5p was selected as the research object from CRA and normal tissue. A total of 93 DEGs were selected. Among them, GO and KEGG enrichment analyses were closely related to biological processes such as transcriptional regulatory complex, RNA polymerase Ⅱ transcriptional regulatory complex, enzyme-linked receptor protein signaling pathway, and DNA-binding transcriptional activator activity, cancer pathway, PI3K/Akt pathway, etc. miR-34a-5p is mainly enriched in PI3K/Akt, cell cycle, and colorectal cancer pathways. Five key DEGs were screened out through the Matescape database, among which Bcl-2 and CCND1 were the key DEGs of miR-34a-5p. Further screening of the TFs of key DEGs revealed that E2F transcription factor 1 (E2F1) and tumor protein P53 (TP53) were the main TFs of Bcl-2 and CCND1. Animal experiments showed that Xiezhuo Jiedu recipe could effectively up-regulate mRNA level of miR-34a-5p, down-regulate the expression of PI3K, Akt, Bcl-2, p-PI3K, and p-Akt proteins in the intestinal tissue of CRA mice, down-regulate the positive expression rate of CCND1, and increase the apoptosis rate of intestinal epithelial cells. ConclusionIt is speculated that Xiezhuo Jiedu recipe may inhibit the abnormal proliferation and promote the apoptosis of intestinal epithelial cells in CRA mice by regulating the miR-34a-5p/PI3K/Akt signaling pathway, thus playing a role in the prevention of CRA.

9.
Artigo em Chinês | WPRIM | ID: wpr-1017164

RESUMO

ObjectiveTo observe the protective effect of Didang Xianxiong decoction on the kidneys of diabetic rats, its regulation on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and its influence on podocyte apoptosis and explore the mechanism of Didang Xianxiong decoction in improving diabetic nephropathy. MethodThe diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ) solution of 55 mg·kg-1. The successfully replicated model rats were randomly divided into the model group, Didang Xianxiong decoction group (8.10 g·kg-1), Xiao Xianxiongtang group (4.05 g·kg-1), Didangtang group (4.05 g·kg-1), and alagebrium (ALT-711) group (3 mg·kg-1), with six rats in each group. In addition, six rats were included in the blank group. After continuous administration for eight weeks, hematoxylin-eosin (HE) staining was used to observe the pathological changes in rats' kidney tissue. Masson staining was used to observe the degree of collagen deposition. Periodic acid-Schiff (PAS) staining was used to observe basement membrane lesions, and immunohistochemistry was used to detect the expression of phosphorylation (p)-PI3K and p-Akt proteins in rats' kidney tissue. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to detect podocyte apoptosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PI3K and Akt in rats' kidney tissue. Western blot was used to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), phosphorylation glycogen synthase kinase-3β (p-GSK-3β), and Caspase-3 in the kidney tissue. ResultCompared with the normal group, the model group had compensatory expansion of glomeruli, proliferation of mesangial cells, a large amount of collagen deposition in the mesangial stroma, thickening of the basement membrane, decreased mRNA expression of PI3K and Akt, and inhibition of PI3K and Akt protein phosphorylation (P<0.01). It also underwent enhanced apoptotic signaling, decreased expression of anti-apoptotic protein Bcl-2 (P<0.01), and increased expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01). Compared with the model group, Didang Xianxiong decoction significantly improved kidney tissue pathology, increased mRNA expression of PI3K and Akt (P<0.01), significantly up-regulated phosphorylation levels of PI3K and Akt proteins (P<0.01) and Bcl-2 expression (P<0.01), downregulated the expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01), and weakened podocyte apoptotic signaling. ConclusionDidang Xianxiong decoction may promote the activation of the PI3K/Akt signaling pathway, inhibit podocyte apoptosis, and thus slow down the progression of diabetic nephropathy.

10.
Artigo em Chinês | WPRIM | ID: wpr-1017326

RESUMO

Objective:To discuss the effect of downregulating the proline-rich protein 11(PRR11)expression on drug resistance of the esophageal cancer drug resistant cells,and to clarify the related mechanism.Methods:The drug resistant cells EC9706/cisplatin(DDP)were established by incrementally stimulating the human esophageal cancer EC9706 cells with the increasing concentrations of DDP.The drug sensitivity of the EC9706/DDP cells was detected by MTT assay;the expression levels of PRR11 mRNA and protein in the EC9706/DDP cells and their parent EC9706 cells were detected by real-time fluorescence quantitative PCR(RT-qPCR)and Western blotting methods.The EC9706/DDP cells were divided into control group,sh-NC group(infected with sh-NC),sh-PRR11 group(infected with sh-PRR11),sh-NC+DDP group(infected with sh-NC and treated with 4 mg·L-1 DDP),and sh-PRR11+DDP group(infected with sh-PRR11 and treated with 4 mg·L-1 DDP).The expression levels of PRR11 mRNA in the cells in various groups were detected by RT-qPCR method;the expression levels of PRR11,phosphoinositide 3-kinase(PI3K)p110α,protein kinase B(AKT),phosphorylated AKT(p-AKT),P-glycoprotein(P-gp),and multidrug resistance-associated protein 1(MRP1)proteins in the cells in various groups were detected by Western blotting method;the apoptotic rates of the cells in various groups were detected by flow cytometry.Results:The DDP-resistant cell line EC9706/DDP was successfully obtained,and the drug resistance index was 7.23±0.86.Compared with the EC9706 cells,the expression levels of PRR11 mRNA and protein in the EC9706/DDP cells were increased(P<0.05).Compared with control and sh-NC groups,the expression levels of PRR11 mRNA and protein in the cells in sh-PRR11 group were decreased(P<0.05),and the 50%inhibitory concentration(IC50)of DDP was decreased(P<0.05).Compared with sh-NC group,the expression levels of PI3K p110α,p-AKT,P-gp,and MRP1 proteins in the cells in sh-NC+DDP and sh-PRR11 groups were decreased(P<0.05),and the apoptotic rate of the cells was increased(P<0.05).Compared with sh-NC+DDP group and sh-PRR11 group,the expression levels of PI3K p110α,p-AKT,P-gp,and MRP1 proteins in the cells in sh-PRR11+ DDP group were increased(P<0.05),and the apoptotic rate of the cells was increased(P<0.05).Conclusion:Downregulating the expression of PRR11 gene in the drug resistant EC9706/DDP cells can inhibit the expressions of drug resistance-related proteins,reverse the resistance to DDP,and induce the apoptosis;its mechanism may be related to the inhibition of activation of the PI3K/AKT signaling pathway.

11.
Artigo em Chinês | WPRIM | ID: wpr-1017330

RESUMO

Objective:To discuss the effect of downregulating of high mobility group box protein 2(HMGB2)expression on the biological behavior of the liver cancer cells and the epithelial-mesenchymal transition(EMT)process,and to clarify its mechanism.Methods:The human liver cancer LM3 cells at logarithmic growth phase were divided into negative control group and HMGB2 RNA interference group(HMGB2 siRNA group);the cells in two groups were transfected with RNA oligonucleotides(RNA oligos)with irrelevant sequences and RNA oligos designed to knock down HMGB2,and the Lipofectamine 2000 was regarded as the vector.The expression levels of HMGB2 mRNA and protein in the cells in two groups were detected by real-time fluorescence quantitative PCR(RT-qPCR)and Western blotting methods;cell scratch assay and Transwell chamber assay were used to detect the migration and invasion abilities of the cells in two groups;the expression levels of E-cadherin,N-cadherin,and Vimentin proteins and protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway related proteins in the cells in two groups were detected by Western blotting method.Results:Compared with negative control group,the expression levels of HMGB2 mRNA and protein in the cells in HMGB2 siRNA group were significantly decreased(P<0.05),the cell scratch healing rate was significantly decreased(P<0.01),the number of invasion cells was significantly decreased(P<0.01),and the expression level of E-cadherin protein in the cells was significantly increased(P<0.01),while the expression levels of N-cadherin,Vimentin,mTOR,AKT,and phosphorylated AKT(p-AKT)proteins in the cells were significantly decreased(P<0.05 or P<0.01).Conclusion:Downregulating the expression of HMGB2 can reduce the migration and invasion abilities of the liver cancer LM3 cells and inhibit the EMT,and its mechanism may be related to regulating the expression of the AKT/mTOR pathway related proteins.

12.
Chongqing Medicine ; (36): 232-238, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1017470

RESUMO

Objective To investigate the expression of PIK3CA,phosphorylated protein kinase B(p-AKT)and phosphatase and tensin homologue deleted on chromosome 10(PTEN)in sinonasal squamous cell carcinoma(SNSCC).Methods The expressions of PIK3CA and PTEN in head and neck squamous cell carci-noma(HNSCC)were analyzed through the data set of HNSCC in the cancer genome map of UCSC Xena data-base.The immunohistochemical SP method was used to measure the expression of PIK3CA,p-AKT and PTEN in 43 cases of SNSCC tissues,20 cases of normal inferior concha tissues.The relationship between the expressions of PIK3CA,p-AKT and PTEN protein with the clinicopathological features and prognosis of the patients with SNSCC was analyzed.Results The results of bioinformatic analysis showed that PIK3CA mR-NA expression in HNSCC tissues was higher than that in paracancerous tissues(P<0.01),while the PTEN mRNA expression was lower than that in paracancerous tissues(P<0.05).The immunohistochemical detec-tion results showed that the positive expressions rates of PIK3CA and p-AKT proteins in normal nasal mucosa tissues were significantly lower than those in SNSCC tissues,while the positive expression rate of PTEN pro-tein in SNSCC tissues was significantly higher than that in normal inferior nasal concha mucosa tissues,and the differences were statistically significant(P<0.01).The expressions of PIK3CA and p-AKT protein were related to the clinical stage,differentiation degree and primary site(P<0.05),but were not related to age,gender,smoking and drinking(P>0.05);the PTEN protein expression was not related with the clinical stage,differentiation degree,primary site,age,smoking and drinking(P>0.05).The Spearman analysis showed that the expression of PIK3CA in SNSCC tissues was positively correlated with p-AKT protein ex-pression(r=0.664,P<0.01),and PIK3CA was negatively correlated with PTEN protein(r=-0.414,P<0.01).The expression of p-AKT was negatively correlated with PTEN protein(r=-0.453,P<0.01).The Kaplan-Meier analysis showed that the median survival time of the patients with PIK3CA and p-AKT protein positive expression was shorter than that of the patients with negative expression(P<0.01).There was no statistically significant difference in median survival between the patients with PTEN protein positive expres-sion and those with negative expression.Conclusion The overexpressions of PIK3CA and p-AKT accompa-nied by the loss of PTEN expression participate in the development and progression of SNSCC,moreover the PIK3CA and p-AKT expressions are related to the poor prognosis of the patients.

13.
Basic & Clinical Medicine ; (12): 308-316, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1018614

RESUMO

Objective To evaluate the regulatory effect of the adaptor related protein complex 2 subunit μ1(AP2M1)on proliferation and invasion of diffuse large B-cell lymphoma(DLBCL).Methods Human diffuse large B-cell lymphoma cell line OCI-LY8 was aliquoted into control group,NC-shRNA group,AP2M1-shRNA group,NC-LV group,and AP2M1-LV group.Lipofectamine 2000 was used for cell transfection.Cell proliferation was detected by tetramethylazolium salt(MTT)method,apoptosis was detected by flow cytometry and cell migration and invasion were detected by Transwell assay.The protein expression of AP2M1,epidermal growth factor receptor(EGFR),p-phosphatidylinositol 3 kinase(PI3K),PI3K,p-protein kinase B(Akt)and AKT was detec-ted by Western blot.Results Compared with control group,the relative expression of AP2M1 mRNA and protein in the AP2M1-shRNA group was decreased(P<0.05).The relative cell viability was increased(P<0.05).The cell apoptosis rate was decreased(P<0.05).The counting number of migrating and invading cells was in-creased(P<0.05).The relative expression level of EGFR protein and the phosphorylation level of PI3K and AKT were increased(P<0.05).Compared with Control group,the expression of AP2M1 mRNA and protein relative ex-pression level in AP2M1-LV group was increased(P<0.05).The relative cell viability was decreased(P<0.05).The cell apoptosis rate was increased(P<0.05).The number of migrating and invading cells was decreased(P<0.05).The relative expression level of EGFR protein and the phosphorylation level of PI3K and AKT were all decreased(P<0.05).Conclusions The over-expression of AP2M1 partially inhibits the proliferation and invasion of DLBCL cells by inhibiting the EGFR/PI3K/AKT signaling pathway.

14.
Basic & Clinical Medicine ; (12): 489-495, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1018643

RESUMO

Objective To explore the therapeutic effect and mechanism of pachymic acid(PA)on Helicobacter py-lori(Hp)-associated gastritis in rats.Methods A rat model of Hp-associated gastritis was established;all rats were separated into control group(CT group),model group(group M),PA low-dose group(PA L group),PA high-dose group(PA H group),and PA H+phosphatidylinositol 3-kinase(PI3K)activator(740 Y-P)group;the gastric mucosal injury index(UI)of rats in each group was evaluated,transmission electron microscopy was applied to observe the morphology of gastric mucosal cells.HE staining was applied to evaluate the pathological characteristics of gastric mucosa.ELISA was applied to detect the levels of interleukin-6(IL-6),tumor necrosis factor-α(TNF-α),IL-10,induc-ible nitric oxide synthase(iNOS),and superoxide dismutase(SOD)in gastric tissue.Western blot method was applied to detect the expression of PI3K,phosphorylated PI3K(p-PI3K),protein kinase B(AKT),p-AKT,nuclear factor(NF)-κB p65,and p-NF-κB p65 proteins.Results Compared with the CT group,the gastric mucosa erosion,epithelial ede-ma,congestion,and severe ulcers were observed in the group M,with epithelial cell pyknosis and inflammatory cell in-filtration,the UI,IL-6,TNF-α,iNOS,and the expression levels of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins increased,the levels of IL-10 and SOD decreased(P<0.05);compared with group M,the gastric mucosal damage and inflammatory cell infiltration in the PA L and PA H groups were improved,the UI,IL-6,TNF-α,iNOS by the host animal and the expression of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins all decreased,the level of IL-10 and SOD was increased(P<0.05);compared with the PA H group,the pathological damage of the gastric mucosa in the PA H+740 Y-P group was aggravated,with epithelial cell pyknosis.The UI,IL-6,TNF-α,iNOS,and the expression of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins increased,the levels of IL-10 and SOD decreased(P<0.05).Conclusions PA might facilitate the treatment of Hp-associated gastritis in rats by inhibiting the PI3K/AKT/NF-κB signaling pathway.

15.
Artigo em Chinês | WPRIM | ID: wpr-1018804

RESUMO

Objective To discuss the effect of PI3K-AKT signaling pathway regulated by microRNA-155(miRNA-155)targeted protein tyrosine phosphatase non-receptor type 21(PTPN21)on the proliferation,migration and invasion of hepatocellular carcinoma(HCC)cells.Methods Lentivirus transfection was used to silence the expression of miRNA-155 in human Huh7 HCC cells,and real-time fluorescent quantitative polymerase chain reaction(RT-qPCR)was used to detect the silencing effect of miR-155.After obtaining stable cell lines,the cell lines were randomly divided into Blank group(normal Huh7 cells),shNC group(Huh7 cells+empty miR-155 vector),sh-miR-155(Huh7 cells+miR-155 silencing),sh-miR-155+Recilisib group(Huh7 cells+miR-155 silencing+PI3K-AKT agonist),shNC+Recilisib group(Huh7 cells+empty miR-155 vector+PI3K-AKT agonist).Dual luciferase assay was used to determine whether PTPN21 was the downstream of miR-155.The cell proliferation ability of cells in each group was detected by MTT assay.The apoptosis level of each group was tested by flow cytometry.The invasion and migration ability of cells was assessed by Transwell assay.Western blot analysis was used to observe the differences in protein expression of PTPN21,PI3K,P-PI3K,AKT,P-AKT,and apoptosis-related proteins including BAX,BCL-2 and caspase-3 in all groups.Results The expression level of miR-155 in sh-miR-155 group was lower than that in Blank group and shNC group(P<0.000 1),and the difference in miR-155 expression level between Blank group and shNC group was not statistically significant(P>0.05).MTT results showed that A values of Huh7 cells at 2,3,4 and 5 day in sh-miR-155 group were lower than those in Blank group and shNC group(P<0.000 1),while these differences between Blank group and shNC group were not statistically significant(P>0.05).In sh-miR-155 group the A values at 2,3,4 and 5 day were lower than those in sh-miR-155+Recilisib group and shNC+Recilisib group(P=0.0052 and P<0.0001,respectively),while the A values at 2,3,4 and 5 day in sh-miR-155+Recilisib were lower than those in shNC+Recilisib group(P<0.000 1).There was no significant differences in cell migration and number of invasion cells between the Blank group and shNC group(P>0.05).After activation of PI3K-AKT signaling pathway,the migration and invasion capacity of HCC cells in the shNC+Recilisib group were significantly enhanced when compared with the Blank group(P<0.000 1).In contrast,the number of migrated and invaded Huh7 cells after miR-155 silencing was significantly lower than that in the Blank group and shNC group(P<0.000 1)and this phenomenon became reversed by PI3K agonist.Compared with the sh-miR-155 group,in the sh-miR-155+Recilisib group the migration and invasion ability of HCC cells was enhanced(P=0.000 2).Lentiviral transfection of Huh7 human HCC cells to silence miR-155 and downregulate miR-155 inhibiting PTPN21 regulation of the PI3K-AKT signaling pathway,thus inhibiting the invasion,migration and proliferation ability of HCC cells and promoting the apoptosis of HCC cells.Conclusion miR-155 inhibits the migration,invasion and proliferation of HCC cells through targeting PTPN21 regulation of PI3K-AKT signaling pathway.The miR-155 may be a potential therapeutic target for HCC in the future.(J Intervent Radiol,2024,32:44-51)

16.
Artigo em Chinês | WPRIM | ID: wpr-1020102

RESUMO

Objective:To investigate the influences of lupinol on the proliferation,apoptosis and invasion of cer-vical cancer cells by regulating autophagy mediated by phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway.Methods:The proliferation rate of human cervical cancer cell line HeLa cells treated with 0,10,25,50,70,90 μmol/L lupinol was determined,and the appropriate concentration of lupinol was screened out.HeLa cells cultured in vitro were randomly grouped into control group,low-dose lupinol group,high-dose lupinol group,740 Y-P group(PI3K activator),and high-dose lupinol+740 Y-P group.After group intervention with lupinol and 740 Y-P,MDC fluorescence staining was used to detect the forma-tion of autophagic vacuolation of HeLa cells in each group;western blot was used to detect the expression of au-tophagy and PI3K/AKT/mTOR pathway-related proteins in HeLa cells in each group.HeLa cells cultured in vitro were randomly grouped into control group,low-dose lupinol group,high-dose lupinol group,high-dose lupinol+rapamycin(Rapa),and high-dose lupinol+3-methyladenine(3-MA)group.After the intervention of high dose of lupinol,Rapa and 3-MA,the proliferation of HeLa cells in each group was detected by MTT assay and plate colony formation assay;flow cytometry was used to detect the apoptosis of HeLa cells in each group;transwell assay was used to detect the invasion of HeLa cells in each group;western blot was used to detect the expressions of proliferation,apoptosis and epithelial-mesenchymal transition-related proteins in HeLa cells in each group.Re-sults:Compared with the control group,the relative content of autophagic vacuoles,the protein expressions of Mi-crotubule-associated protein 1A/1 B-light chain 3(LC3)Ⅱ/LC3Ⅰ,and Beclin-1 in the low and high dose lupinol groups were all increased(P<0.05),the phosphorylated PI3K(p-PI3K)/PI3K,phosphorylated AKT(p-AKT)/AKT,and phosphorylated mTOR(p-mTOR)/mTOR decreased(P<0.05);the relative content of autophagic vac-uoles,the protein expressions of LC3Ⅱ/LC3Ⅰ,and Beclin-1 in the high-dose lupinol group were further increased compared with the low-dose lupinol group(P<0.05),the p-PI3K/PI3K,p-AKT/AKT,and p-mTOR/mTOR were further decreased(P<0.05);the relative content of autophagic vacuoles,the protein expressions of LC3Ⅱ/LC3Ⅰ,and Beclin-1 in 740 Y-P group decreased compared with the control group(P<0.05),the p-PI3K/PI3K,p-AKT/AKT,and p-mTOR/mTOR increased(P<0.05).Compared with the high-dose lupinol group,the relative content of autophagic vacuoles,the protein expressions of LC3Ⅱ/LC3Ⅰ,and Beclin-1 in the high-dose lupinol+740 Y-P group decreased(P<0.05),the p-PI3K/PI3K,p-AKT/AKT,and p-mTOR/mTOR increased(P<0.05).Com-pared with the control group,the cell proliferation rate,colony formation rate,invasion number,and the protein ex-pressions of proliferating cell nuclear antigen(PCNA),B cell lymphoma 2(Bcl-2)and Vimentin in the low and high dose groups of lupinol were all decreased(P<0.05),the apoptosis rate,and the protein expressions of Bcl-2 as-sociated x protein(Bax)and zonula occludens protein 1(ZO-1)were all increased(P<0.05);compared with the low-dose lupinol group,the cell proliferation rate,colony formation rate,invasion number,and the protein expres-sions of PCNA,Bcl-2 and Vimentin in the high-dose lupinol group were further decreased(P<0.05),the apopto-sis rate,and the protein expressions of Bax and ZO-1 were further increased(P<0.05).Compared with the high-dose lupinol group,the cell proliferation rate,colony formation rate,invasion number,and the protein expres-sions of PCNA,Bcl-2 and Vimentin in the high-dose lupinol+Rapa group were increased(P<0.05),the apopto-sis rate,and the protein expressions of Bax and ZO-1 were decreased(P<0.05);the cell proliferation rate,colo-ny formation rate,invasion number,and the protein expressions of PCNA,Bcl-2 and Vimentin in the high-dose lu-pinol+3-MA group were decreased(P<0.05),the apoptosis rate,and the protein expressions of Bax and ZO-1 were increased(P<0.05).Conclusions:Lupinol induces protective autophagy by inhibiting the PI3K/AKT/mTOR pathway,thereby promoting the apoptosis of cervical cancer cells and inhibiting their proliferation and inva-sion.Activation of autophagy attenuates the effects of lupinol on the proliferation,apoptosis and invasion of cervi-cal cancer cells.

17.
Tianjin Medical Journal ; (12): 266-272, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1021008

RESUMO

Objective To explore the effect of Huangqi Yanghe Decoction on wound healing of diabetic foot ulcer(DFU)rats based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/nuclear factor-κB(NF-κB)signal pathway.Methods DFU rat model was constructed,and 48 rats successfully modeled were randomly divided into the model group,the Huangqi Yanghe Decoction low(8.5 g/kg)group,the Huangqi Yanghe Decoction high(17 g/kg)dose group and the Huangqi Yanghe Decoction high dose(17 g/kg)+LY294002(PI3K/AKT pathway inhibitor,0.3 mg/kg)group.There were 12 rats in each group.Another 12 rats were selected as the control group.Rats in each group were given corresponding drug intervention for 4 weeks.After the 14th and 28th day-administration,the general state and wound changes of rats were observed,and the wound healing rate was calculated.The fasting blood glucose(FBG)level of rats was measured,and the percutaneous partial pressure of oxygen(TcpO2)of tissue around the wound was detected.Serum levels of vascular endothelial growth factor(VEGF),hypoxia inducible factor-1α(HIF-1α),C-reactive protein(CRP)and interleukin(IL)-6 were determined by enzyme linked immunosorbent assay.Histopathological changes of the wound were observed by hematoxylin-eosin staining.Immunohistochemical staining was used to measure the microvascular density of rat wound tissue.The protein expression levels of PI3K,phosphorylated PI3K(p-PI3K),AKT,phosphorylated AKT(p-AKT),NF-κB p65,phosphorylated NF-κB p65(p-NF-κB p65)and NF-κB inhibitory protein α(IκB-α)in rat wound tissue were determined by Western blot assay.Results Rats in the control group had smooth hair color,normal diet,drinking water and excretion,more active,wound healing fast,less inflammatory reaction in wound tissue,and there were more new blood vessels.Fibroblasts and collagen matrix were abundant in granulation tissue.In the model group,the fur color of rats was dull and matte,and the activity was reduced.The symptoms of polydipsia,polyphagia and polyuria were appeared in the model group,the wound color was dark,and edema and ulcer appeared in the surrounding tissue,a large number of inflammatory cells infiltrated in the wound tissue,accompanied by tissue necrosis and exudation,fewer neovascularization and fibroblasts were observed.Wound healing rate,TcpO2 in wound surrounding tissue,serum VEGF,HIF-1α,microvascular density,p-PI3K,p-AKT and IκB-α protein expression levels in wound tissue were decreased,and FBG,serum CRP,IL-6,p-NF-κB p65 protein expression in wound tissue were increased(P<0.05).Compared with the model group,the state of rats was gradually improved in the Huangqi Yanghe Decoction low and high dose groups,and the lesion degree of wound tissue was reduced successively,wound healing rate,TcpO2 in wound surrounding tissue,serum VEGF,HIF-1α,microvascular density,p-PI3K,p-AKT and IκB-α protein expression levels in wound tissue were increased in turn(P<0.05).The FBG,serum CRP,IL-6 and p-NF-κB p65 protein expression in wound tissue were decreased in turn(P<0.05).LY294002 could partially reverse the therapeutic effect of high-dose Huangqi Yanghe Decoction on DFU rats(P<0.05).Conclusion Huangqi Yanghe Decoction can regulate PI3K/AKT/NF-κB pathway,inhibit inflammatory response in DFU rats,promote angiogenesis and thus promote wound healing.

18.
Artigo em Chinês | WPRIM | ID: wpr-1021210

RESUMO

BACKGROUND:In recent years,it has been found that some traditional Chinese medicine monomers can alleviate oxidative stress and apoptosis of the skin flap,promote vascular regeneration of the skin flap and prevent skin flap necrosis by activating autophagy. OBJECTIVE:To review the research progress of traditional Chinese medicine monomer regulating autophagy in preventing flap necrosis. METHODS:The Chinese and English key words were"traditional Chinese medicine(TCM),autophagy,skin flaps".The first author searched the relevant articles published in CNKI and PubMed databases from January 2010 to October 2022.A total of 196 articles were retrieved in the preliminary screening and then screened according to the inclusion and exclusion criteria.The quality assessment was conducted by reading the literature titles and abstracts.Finally,55 articles were summarized. RESULTS AND CONCLUSION:(1)The regulation of autophagy is mediated by AMPK/mTOR,PI3K/AKT and other signaling pathways.Activation of autophagy can alleviate the oxidative stress and apoptosis of the flap,promote the regeneration of blood vessels in the flap,and prevent flap necrosis.(2)Terpenoids(Betulinic acid,Andrographolide,Notoginseng Triterpenes,Catalpa),phenolic compounds(Resveratrol,Curcumin,Gastrodin),phenolic acids(Salvianolic acid B)and steroid compounds(Pseudoginsenoside F11)in traditional Chinese medicine monomers can alleviate oxidative stress and apoptosis of skin flap by regulating related signaling pathways to activate autophagy,promote skin flap angiogenesis and promote skin flap survival.(3)Studying the research progress of traditional Chinese medicine monomer to prevent flap necrosis by regulating autophagy can provide a reference and theoretical basis for traditional Chinese medicine to prevent flap necrosis and promote flap healing in the clinic.

19.
Herald of Medicine ; (12): 19-25, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1023673

RESUMO

Objective To investigate the effects of icariin on high glucose-induced autophagy and apoptosis of podocytes,and the regulating effects on mammalian target of rapamycin(mTOR)/serine-threonine kinase(Akt)/cyclic adenosine monophosphate response element binding protein(CREB)pathway.Methods The mouse podocytes MPC5 were taken and divided into five groups:normal control group(5.5 mmol·L-1 glucose),high glucose group(30 mmol·L-1 glucose),icariin group(30 mmol·L-1glucose+5 μmol·L-1icariin),GDC-0349 group(30 mmol·L-1glucose+50 μmol·L-1 GDC-0349),icariin+GDC-0349 group(30 mmol·L-1 glucose+5 μmol·L-1 icariin+50 μmol·L-1 GDC-0349).Cultured for 48 hours,the tetramethylazozolium salt method was used to detect the viability of MPC5 cells;acridine orange staining was used to observe the autophagy of MPC5 cells;apoptosis of MPC5 cells was detected by flow cytometry;Western blotting was used to detect the expression of autophagy[microtubule associated protein one light chain 3(LC3)II,LC3Ⅰ,autophagy-related protein(Beclin-1)],apoptosis[Bcl-2 related X protein(Bax),B cell lymphoma-2(Bcl-2)]and mTOR/Akt/CREB pathway-related proteins of MPC5 cells.Results Compared with the normal control group,the cell viability,expression levels of Bcl-2,phosphorylated mTOR(p-mTOR)/mTOR,phosphorylated Akt(p-Akt)/Akt,phosphorylated CREB(p-CREB)/CREB protein of MPC5 cells in the high glucose group were significantly decreased(P<0.05),the autophagy ability was enhanced,the autophagosome showed orange fluorescence,and the apoptosis rate,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bax protein expression levels were significantly increased(P<0.05).Compared with the high glucose group,the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt,p-CREB/CREB protein expression levels of MPC5 cells in icariin group were significantly increased,the autophagy ability was further enhanced,the number of autophagosomes was increased,the autophagosomes showed brick red fluorescence(P<0.05),the apoptosis rate and Bax protein expression level were significantly decreased(P<0.05),and the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt and p-CREB/CREB proteins expression levels of MPC5 cells in GDC-0349 group were significantly decreased,the autophagy ability was weakened,the number of autophagosomes was reduced,the autophagosomes showed orange fluorescence(P<0.05),and the apoptosis rate and Bax protein expression level were significantly increased(P<0.05);icariin+GDC-0349 could reverse the effect of icariin on high glucose induced MPC5 cells(P<0.05).Conclusion Icariin promotes elevated glucose-induced podocyte autophagy and inhibits apoptosis by activating the mTOR/Akt/CREB pathway.

20.
Artigo em Chinês | WPRIM | ID: wpr-1030483

RESUMO

Objective To investigate the effect of atractylenolideⅠon lung injury in rats with recurrent respiratory tract infection(RRTI)of lung and spleen qi deficiency by regulating phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway.Methods Eighty-four rats were randomly separated into a control group,a model group,a low-dose atractylenolideⅠgroup,a high-dose atractylenolideⅠgroup,a positive drug group,an insulin-like growth factor-1(IGF-1)group,and a high-dose atractylenolide Ⅰ+IGF-1 group,with 12 rats in each group.Except for the control group,the RRTI rat model of lung and spleen qi deficiency was constructed using a combination of fatigue,dietary disorders,and fumigation method with shavings and tobacco among rats in other groups.After the model is successfully copied,the model was administered once a day for 6 weeks.Animal lung function instrument was applied to detect the changes of peak expiratory flow(PEF),forced expiratory volume in first second(FEV1),forced vital capacity(FVC)in rats.The changes of wet/dry mass ratio of lungs in rats were detected.HE staining was applied to detect pathological changes of lung tissue in rats of each group.ELISA was applied to detect the levels of interleukin(IL)-6,tumor necrosis factor-α(TNF-α),malondialdehyde(MDA)and the activity of superoxide dismutase(SOD)in rat lung tissue.Western Blot was applied to determine the protein expressions of p-PI3K,p-Akt,and p-mTOR in rat lung tissue.Results Compared with the control group,rats in the model group showed a decrease in PEF,FEV1 and FVC(P<0.01)and an increase in the wet/dry mass ratio of lungs(P<0.01).The alveolar septa in lung tissues had become larger.Pulmonary interstitial edema and a large amount of inflammatory cell infiltration were found.The levels of IL-6,TNF-α and MDA in lung tissue increased(P<0.01),and the SOD activity decreased(P<0.01).The protein expressions of p-PI3K,p-Akt,and p-mTOR in lung tissue increased(P<0.01).Compared with the model group,rats in the low-,high-dose atractylenolideⅠgroups,and positive drug group showed an increase in PEF,FEV1,and FVC,and a decrease in the wet/dry mass ratio of lungs(P<0.01).Pathologic damage in lung tissue was alleviated.The levels of IL-6,TNF-α,MDA decreased and SOD activity in lung tissue increased(P<0.01).The protein expressions of p-PI3K,p-Akt,and p-mTOR in lung tissue decreased(P<0.01),while the corresponding indicators in the IGF-1 group showed opposite trends(P<0.01).Compared with the high-dose group of atractylenolide I,rats in the high-dose atractylenolide I+IGF-1 group showed a decrease in PEF,FEV1 and FVC,and an increase in the wet/dry mass ratio of lungs(P<0.01).Pathologic damage in lung tissue was increased.The levels of IL-6,TNF-α,MDA increased and the SOD activity in lung tissue decreased(P<0.01).The protein expressions of p-PI3K,p-Akt,and p-mTOR in lung tissue increased(P<0.05,P<0.01).Conclusion AtractylenolideⅠmay improve lung injury in RRTI rats of lung and spleen qi deficiency by inhibiting the PI3K/Akt/mTOR pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA