Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 4861-4873, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008064

RESUMO

The aim of this study was to produce Erns protein of bovine viral diarrhea virus (BVDV) by using suspensively cultured CHO cells expression system and to analyze the immunogenicity of the purified Erns protein. In this study, the recombinant eukaryotic expression plasmid pcDNA3.1-BVDV-Erns was constructed based on the gene sequence of BVDV-1 NADL strain. The Erns protein was secreted and expressed in cells supernatant after transfecting the recombinant expression plasmid pcDNA3.1-BVDV-Erns into CHO cells. The expression and purification of the Erns protein was analyzed by SDS-PAGE, the reactivity was determined with anti-His monoclonal antibodies and BVDV positive serum with Western blotting. Immunogenicity analysis of the Erns protein was determined after immunizing New Zealand white rabbits, and the serum antibodies were tested by indirect ELISA (iELISA) and indirect immunofluorescence (IFA). The serum neutralizing titer of the immunized rabbits was determined by virus neutralization test. The concentration of the purified Erns protein was up to 0.886 mg/mL by BCA protein quantification kit. The results showed that the Erns protein could be detected with anti-His monoclonal antibodies and anti-BVDV sera. Serum antibodies could be detected by iELISA on the 7th day post-prime immunization, and the antibody level was maintained at a high titer until the 28th day post-immunization. The antibody titer was 1:128 000. Furthermore, the expression of the Erns protein in BVDV-infected MDBK cells could be detected with immunized rabbits sera by IFA. Moreover, antigen-specific neutralizing antibodies of 2.71 log10 was induced in rabbits. In this study, purified BVDV Erns protein was successfully produced using CHO suspension culture system, and the recombinant protein was proved to have a good immunogenicity, which may facilitate the development of BVD diagnosis method and novel subunit vaccine.


Assuntos
Coelhos , Animais , Cricetinae , Cricetulus , Células CHO , Anticorpos Antivirais , Vírus da Diarreia Viral Bovina/genética , Anticorpos Monoclonais/genética , Diarreia , Vacinas Virais/genética
2.
Chinese Journal of Biotechnology ; (12): 4784-4795, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008058

RESUMO

The aim of this study was to produce recombinant porcine interferon gamma (rPoIFN-γ) by Chinese hamster ovarian (CHO) cells expression system and to analyze its antiviral activity. Firstly, we constructed the recombinant eukaryotic expression plasmid pcDNA3.1-PoIFN-γ and transfected into suspension cultured CHO cells for secretory expression of rPoIFN-γ. The rPoIFN-γ was purified by affinity chromatography and identified with SDS-PAGE and Western blotting. Subsequently, the cytotoxicity of rPoIFN-γ was analyzed by CCK-8 test, and the antiviral activity of rPoIFN-γ was evaluated using standard procedures in VSV/PK-15 (virus/cell) test system. Finally the anti-Seneca virus A (SVA) of rPoIFN-γ activity and the induction of interferon-stimulated genes (ISGs) and cytokines were also analyzed. The results showed that rPoIFN-γ could successfully expressed in the supernatant of CHO cells. CCK-8 assays indicated that rPoIFN-γ did not show cytotoxicity on IBRS-2 cells. The biological activity of rPoIFN-γ was 5.59×107 U/mg in VSV/PK-15 system. Moreover, rPoIFN-γ could induced the expression of ISGs and cytokines, and significantly inhibited the replication of SVA. In conclusion, the high activity of rPoIFN-γ was successfully prepared by CHO cells expression system, which showed strong antiviral activity on SVA. This study may facilitate the investigation of rPoIFN-γ function and the development of novel genetically engineered antiviral drugs.


Assuntos
Animais , Cricetinae , Suínos , Interferon gama/farmacologia , Cricetulus , Células CHO , Sincalida , Proteínas Recombinantes/farmacologia , Antivirais/farmacologia
3.
Chinese Journal of Biotechnology ; (12): 4258-4274, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008025

RESUMO

Anti-reflective nanocoatings that mimic the eyes of fruit flies are biodegradable materials with great market potential for a variety of optical devices that require anti-reflective properties. Microbial expression of retinin provides a new idea for the preparation of nanocoatings under mild conditions compared to physicochemical methods. However, the current expression level of retinin, the key to anti-reflective coating, is low and difficult to meet mass production. In this study, we analyzed and screened the best expression hosts for Drosophila-derived retinin protein, and optimized its expression. Chinese hamster ovary (CHO) cells were identified as the efficient expression host of retinin, and purified retinin protein was obtained. At the same time, the preparation method of lanolin nanoemulsion was explored, and the best anti-reflective ability of the nano-coating was determined when the ratio of specific concentration of retinin protein and wax emulsion was 16:4, the pH of the nano-coating formation system was 7.0, and the temperature was 30 ℃. The enhanced antireflective ability and reduced production cost of artificial antireflective nanocoatings by determining the composition of nanocoatings and optimizing the concentration, pH and temperature of system components may facilitate future application of artificial green degradable antireflective coatings.


Assuntos
Animais , Cricetinae , Células CHO , Emulsões , Cricetulus , Drosophila , Proteínas do Olho , Proteínas de Drosophila
4.
Chinese Journal of Biotechnology ; (12): 3887-3898, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008001

RESUMO

In order to achieve large-scale production of HSV-IgM (HSV1, HSV2) human-mouse chimeric antibody in vitro, the gene sequence of the corresponding hybridoma cell was harvested by RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) technique to clone the chimeric antibody into eukaryotic expression vectors, and express the target proteins in CHO-S cells. At the same time, the screening process of stable cell lines was optimized, and the pressure conditions of pool construction stage and monoclonal screening stage were explored. Finally, the target protein was purified by protein L affinity purification method and the biological activity was detected. The recombinant IgM antibodies, HSV1 and HSV2, weighted at 899 kDa and 909 kDa respectively, were prepared. The optimal screening pressure was 20P200M (the first phase of pressure) and 50P1000M (the second phase of pressure). The final titer for the monoclonal expression of HSV1-IgM and HSV2-IgM was 1 620 mg/L and 623 mg/L, respectively. This study may facilitate the development of quality control products of HSV1 and HSV2 IgM series recombinant antibodies as well as efficient expression of IgM subtype antibodies in vitro.


Assuntos
Cricetinae , Humanos , Animais , Camundongos , Imunoglobulina M/genética , Anticorpos Antivirais , Células CHO , Cricetulus , Hibridomas , Proteínas Recombinantes de Fusão
5.
Chinese Journal of Biotechnology ; (12): 3757-3771, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007991

RESUMO

In response to the market demand for therapeutic antibodies, the upstream cell culture scale and expression titer of antibodies have been significantly improved, while the production efficiency of downstream purification process is relatively fall behind, and the downstream processing capacity has become a bottleneck limiting antibody production throughput. Using monoclonal antibody mab-X as experimental material, we optimized the caprylic acid (CA) precipitation process conditions of cell culture fluid and low pH virus inactivation pool, and studied two applications of using CA treatment to remove aggregates and to inactivate virus. Based on the lab scale study, we carried out a 500 L scale-up study, where CA was added to the low pH virus inactivation pool for precipitation, and the product quality and yield before and after precipitation were detected and compared. We found that CA precipitation significantly reduced HCP residuals and aggregates both before and after protein A affinity chromatography. In the aggregate spike study, CA precipitation removed about 15% of the aggregates. A virus reduction study showed complete clearance of a model retrovirus during CA precipitation of protein A purified antibody. In the scale-up study, the depth filtration harvesting, affinity chromatography, low pH virus inactivation, CA precipitation and depth filtration, and cation exchange chromatography successively carried out. The mixing time and stirring speed in the CA precipitation process significantly affected the CA precipitation effect. After CA precipitation, the HCP residue in the low pH virus inactivation solution decreased 895 times. After precipitation, the product purity and HCP residual meet the quality criteria of monoclonal antibodies. CA precipitation can reduce the chromatography step in the conventional purification process. In conclusion, CA precipitation in the downstream process can simplify the conventional purification process, fully meet the purification quality criterion of mab-X, and improve production efficiency and reduce production costs. The results of this study may promote the application of CA precipitation in the purification of monoclonal antibodies, and provide a reference for solving the bottleneck of the current purification process.


Assuntos
Cricetinae , Animais , Anticorpos Monoclonais/metabolismo , Caprilatos/química , Técnicas de Cultura de Células , Cromatografia de Afinidade , Células CHO , Cricetulus , Precipitação Química
6.
Chinese Journal of Biotechnology ; (12): 149-158, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970365

RESUMO

Chinese hamster ovary (CHO) cells play an irreplaceable role in biopharmaceuticals because the cells can be adapted to grow in suspension cultures and are capable of producing high quality biologics exhibiting human-like post-translational modifications. However, gene expression regulation such as transgene silencing and epigenetic modifications may reduce the recombinant protein production due to the decrease of expression stability of CHO cells. This paper summarized the role of epigenetic modifications in CHO cells, including DNA methylation, histone modification and miRNA, as well as their effects on gene expression regulation.


Assuntos
Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Epigênese Genética/genética , Metilação de DNA , Regulação da Expressão Gênica , Proteínas Recombinantes/genética
7.
Chinese Journal of Epidemiology ; (12): 241-247, 2022.
Artigo em Chinês | WPRIM | ID: wpr-935377

RESUMO

Objective: To explore the immunogenicity and influencing factors of hepatitis B vaccination based on different vaccination schedules among chronic kidney disease (CKD) patients. Methods: CKD patients who participated in randomized controlled trials in four hospitals in Shanxi province and completed three doses of 20 µg vaccination (at months 0, 1 and 6) and four doses of 20 µg or 60 µg vaccination (at months 0, 1, 2, and 6) were surveyed from May 2019 to July 2020.According to the ratio of 1∶1∶1, 273 CKD patients were divided into 3 groups randomly. Quantification of the anti-hepatitis B surface antigen-antibody (anti-HBs) in serum samples was performed using chemiluminescent microparticle immunoassay at months 1 and 6 after the entire course of the vaccinations. The positive rate, high-level positive rate, geometric mean concentration (GMC) of anti-HBs, and the influencing factors were analyzed by χ2 tests, analysis of variance, unconditional logistic regression analysis. Results: A total of 273 CKD patitents were participants.The positive rates in the CKD patients with four doses of 20 µg vaccination (92.96%,66/71) or 60 µg vaccination (93.15%, 68/73) were higher than that in the CKD patients with three doses of 20 µg vaccination (81.69%, 58/71) at month one after the full course of the vaccinations (P<0.05). The GMCs of anti-HBs showed similar results (2 091.11 mIU/ml and 2 441.50 mIU/ml vs. 1 675.21 mIU/ml) (P<0.05). The positive rate was higher in the CKD patients with four doses of 60 µg vaccination (94.83%,55/58) than in those with three doses of 20 µg vaccination (78.79%,52/66) (P<0.05) at month six after the full course of the vaccinations. And the GMC of anti-HBs in the patients with four doses of 60 µg vaccination (824.28 mIU/ml) was significantly higher than those in the patients with 3 or 4 doses of 20 µg vaccination (639.74 mIU/ml and 755.53 mIU/ml) (P<0.05). After controlling the confounding factors, the positive rate in the CKD patients with four doses of 60 µg vaccination were 3.19 (95%CI: 1.02-9.96) and 5.32 (95%CI: 1.27-22.19) times higher than those in the patients with three doses of 20 µg vaccination at months 1 and 6 after the full course of the vaccinations, respectively. The positive rate in CKD patients without immune suppression or hormone therapy was 3.33 (95%CI: 1.26-8.80) and 4.78 (95%CI: 1.47-15.57) times higher than those in the patients with such therapy, respectively. Conclusions: Four doses of 20 µg or 60 µg hepatitis B vaccination could improve the immunogenicity in patients with CKD. And four doses of 60 µg vaccination might play a positive role in maintaining anti-HBs in this population. The immunogenicity in the CKD patients with immune suppression or hormone therapy was poor.


Assuntos
Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Seguimentos , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B , Imunização Secundária , Insuficiência Renal Crônica , Vacinação
8.
Biol. Res ; 55: 2-2, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1383906

RESUMO

BACKGROUND: Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. RESULTS: Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. CONCLUSIONS: These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.


Assuntos
Animais , Proteínas Recombinantes/biossíntese , Células CHO , Caspase 7/genética , Pontos de Checagem do Ciclo Celular , Proteínas Recombinantes/genética , Divisão Celular , Cricetulus , Cricetinae , Técnicas de Inativação de Genes
9.
Chinese Journal of Biotechnology ; (12): 312-320, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878564

RESUMO

To enhance recombinant protein production by CHO cells, We compared the impact of overexpression of metabolic enzymes, namely pyruvate carboxylase 2 (PYC2), malate dehydrogenase Ⅱ (MDH2), alanine aminotransferase Ⅰ (ALT1), ornithine transcarbamylase (OTC), carbamoyl phosphate synthetase Ⅰ (CPSⅠ), and metabolism related proteins, namely taurine transporter (TAUT) and Vitreoscilla hemoglobin (VHb), on transient expression of anti-hLAG3 by ExpiCHO-S. Overexpression of these 7 proteins could differentially enhance antibody production. OTC, CPSI, MDH2, and PYC2 overexpression could improve antibody titer by 29.2%, 27.6%, 24.1%, and 20.3%, respectively. Specifically, OTC and MDH2 could obviously improve early-stage antibody production rate and the culture period was shortened by 4 days compared with that of the control. In addition, OTC and MDH2 had little impact on the affinity of anti-hLAG3. In most cases, overexpression of these proteins had little impact on the cell growth of ExpiCHO-S. MDH2 and ALT1 overexpression in H293T cells could also improve antibody production. Overall, overexpression of enzymes involved in cellular metabolism is an effective tool to improve antibody production in transient expression system.


Assuntos
Animais , Cricetinae , Células CHO , Cricetulus , Enzimas/metabolismo , Proteínas Recombinantes/genética
10.
Electron. j. biotechnol ; 48: 86-94, nov. 2020. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1254836

RESUMO

BACKGROUND: Chinese hamster ovary (CHO) cells are the workhorse for obtaining recombinant proteins. Proteomic studies of these cells intend to understand cell biology and obtain more productive and robust cell lines for therapeutic protein production in the pharmaceutical industry. Because of the great importance of precipitation methods for the processing of samples in proteomics, the acetone, methanol-chloroform (M/C), and trichloroacetic acid (TCA)-acetone protocols were compared for CHO cells in terms of protein recovery, band pattern resolution, and presence on SDS-PAGE. RESULTS: Higher recovery and similar band profile with cellular homogenates were obtained using acetone precipitation with ultrasonic bath cycles (104.18 ± 2.67%) or NaOH addition (103.12 ± 5.74%), compared to the other two protocols tested. TCA-acetone precipitates were difficult to solubilize, which negatively influenced recovery percentage (77.91 ± 8.79%) and band presence. M/C with ultrasonic homogenization showed an intermediate recovery between the other two protocols (94.22 ± 4.86%) without affecting protein pattern on SDS-PAGE. These precipitation methods affected the recovery of low MW proteins (< 15 kDa). CONCLUSIONS: These results help in the processing of samples of CHO cells for their proteomic study by means of an easily accessible, fast protocol, with an almost complete recovery of cellular proteins and the capture of the original complexity of the cellular composition. Acetone protocol could be incorporated to sample-preparation workflows in a straightforward manner and can probably be applied to other mammalian cell lines as well.


Assuntos
Animais , Proteínas Recombinantes , Células CHO , Proteômica/métodos , Acetona , Precipitação Química , Solubilidade , Ácido Tricloroacético , Separação Celular , Clorofórmio , Técnicas de Cultura de Células , Metanol , Eletroforese em Gel de Poliacrilamida
11.
Biol. Res ; 53: 52, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142419

RESUMO

BACKGROUND: Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell In the commercial-scale production of biopharmaceutical proteins. Modification of genes involved in apoptosis may improve the productivity of CHO cells. Executive caspases, including caspases 3 and 7, play critical roles in apoptosis. The effects of the ablation of the caspase 7 gene on proliferation and viability of CHO cells remains unknown. In this study, we applied clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) to target caspase 7 gene of CHO K1 cell via all in one and homology targeted integration strategies. Consequently, the effect of caspase 7 deficiency on cell proliferation, viability, and apoptosis was studied by MTT assay and flow cytometry. RESULTS: Findings of gel electrophoresis, western blotting, and sequencing confirmed the caspase 7 gene silencing in CHO cells (CHO-KO). Proliferation assay revealed that caspase 7 deficiency in CHO cells resulted in the reduction of proliferation in various CHO-KO clones. Besides, the disruption of caspase 7 had negative effects on cell viability in exposure with NaBu which confirmed by MTT assay. Results of flow cytometry using Anexin V/PI demonstrated that Nabu treatment (11 mM) declined the percentage of live CHO-K1 and CHO-KO cells to 70.3% and 5.79%. These results verified that the CHO-K1 cells were more resistant to apoptosis than CHO-KO, however most of CHO-KO cells undergone early apoptosis (91.9%) which seems to be a fascinating finding. CONCLUSION: These results reveal that caspase 7 may be involved in the cell cycle progression of CHO cells. Furthermore, it seems that targeting caspase 7 is not the ideal route as it had previously been imagined within the prevention of apoptosis but the relation between caspase 7 deficiency, cell cycle arrest, and the occurrence of early apoptosis will require more investigation.


Assuntos
Animais , Sobrevivência Celular , Apoptose , Proliferação de Células , Caspase 7/deficiência , Cricetulus , Cricetinae , Células CHO , Caspase 7/genética
12.
Chinese Journal of Biotechnology ; (12): 1041-1050, 2020.
Artigo em Chinês | WPRIM | ID: wpr-826872

RESUMO

In recent years, the demand of biologics has increased rapidly. Cell culture process with perfusion mode has become more and more popular due to its high productivity, good quality and high efficiency. In this paper, the unique operation and the details of process optimization for perfusion culture mode are discussed by comparing with traditional batch culture process. Meanwhile, the progress and strategies in the development and optimization of perfusion culture process in recent years are summarized to provide reference for the future development of mammalian cell perfusion culture technology.


Assuntos
Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Padrões de Referência , Células CHO , Cricetulus , Mamíferos , Perfusão
13.
Chinese Journal of Biotechnology ; (12): 1209-1215, 2020.
Artigo em Chinês | WPRIM | ID: wpr-826857

RESUMO

Bioreactors have been central in monoclonal antibodies and vaccines manufacturing by mammalian cells in suspension culture. Numerical simulation of five impeller combinations in a stirred bioreactor was conducted, and characteristics of velocity vectors, distributions of gas hold-up, distributions of shear rate in the bioreactor using 5 impeller combinations were numerically elucidated. In addition, genetically engineered CHO cells were cultivated in bioreactor installed with 5 different impeller combinations in fed-batch culture mode. The cell growth and antibody level were directly related to the maximum shear rate in the bioreactor, and the highest viable cell density and the peak antibody level were achieved in FBMI3 impeller combination, indicating that CHO cells are sensitive to shear force produced by impeller movement when cells were cultivated in bioreactor at large scale, and the maximum shear rate would play key roles in scaling-up of bioreactor at industrial scale.


Assuntos
Animais , Cricetinae , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Padrões de Referência , Células CHO , Contagem de Células , Simulação por Computador , Cricetulus , Microbiologia Industrial , Métodos
14.
Gac. méd. Méx ; 155(5): 504-510, Sep.-Oct. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1286551

RESUMO

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


Assuntos
Humanos , Animais , Masculino , Neoplasias da Próstata/patologia , Cálcio/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Óvulo/metabolismo , Neoplasias da Próstata/metabolismo , Xenopus laevis , RNA Mensageiro/metabolismo , Canais de Cálcio/metabolismo , Cricetulus , Células CHO , DNA Complementar/isolamento & purificação , Proteínas Reguladoras de Apoptose/isolamento & purificação
15.
Electron. j. biotechnol ; 41: 56-59, sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1087166

RESUMO

Background: Chinese hamster ovary (CHO) cells are the most dependable mammalian cells for the production of recombinant proteins. Replication-incompetent retroviral vector (retrovector) is an efficient tool to generate stable cell lines. Multiple copies of integrated genes by retrovector transduction results in improved recombinant protein yield. HEK-293 and their genetic derivatives are principal cells for retrovector production. Retrovectors packaged in HEK-293 cells pose a risk of infectious agent transmission, such as viruses and mycoplasmas, from serum and packaging cells. Results: In this report, retrovectors were packaged in CHO cells cultured in chemically defined (CD) media. The retrovectors were then used to transduce CHO cells. This method can block potential transmission of infectious agents from serum and packaging cells. With this method, we generated glucagon-like protein-1 Fc fusion protein (GLP-1-Fc) stable expression CHO cell lines. Productivity of GLP-1-Fc can reach 3.15 g/L. The GLP-1-Fc protein produced by this method has comparable bioactivity to that of dulaglutide (Trulicity). These stable cell lines retain 95­100% of productivity after 40 days of continuous culture (~48­56 generations). Conclusions: Suspension CHO cells are clean, safe, and reliable cells for retrovector packaging. Retrovectors packaged from this system could be used to generate CHO stable cell lines for recombinant protein expression.


Assuntos
Retroviridae , Proteínas Recombinantes/metabolismo , Células CHO/metabolismo , Fragmentos Fc das Imunoglobulinas , Linhagem Celular , Cromatografia em Gel/métodos , Vetores de Doenças , Peptídeo 1 Semelhante ao Glucagon , Espectrometria de Massas em Tandem , Técnicas de Cultura Celular por Lotes
16.
Journal of Experimental Hematology ; (6): 227-232, 2019.
Artigo em Chinês | WPRIM | ID: wpr-774331

RESUMO

OBJECTIVE@#To establish 293T cell lines stably expressing Calpain-cleavage related α3 cytoplasmic tail mutants, and to explore the effect of amino acid motifs in integrin β3 cytoplasmic tail on αⅡbβ3-mediated cell function.@*METHODS@#293T cell lines stably co-expressing human wild type integrin αⅡb and full length β3 or mutant β3, including β3-ΔNITY (β3 cytoplasmic tail NITY motif deleted), β3-Δ754 (β3 cytoplasmic tail TNITYRGT motif deleted) and β3-Δ759 (β3 cytoplasmic tail RGT motif deleted) were established. Spreading and adhesion of these stable cell lines on immobilized fibrinogen were tested.@*RESULTS@#293T-αⅡbβ3ΔNITY, 293T-αⅡbβ3Δ754, 293T-αⅡbβ3Δ759 and 293T-αⅡbβ3 cell lines were successfully established. Compared with the 293T cells, 293T-αⅡbβ3 cells which expressed full β3, possessed well adhesion and spread ability on immobilized fibrinogen, suggesting it can be as a surrogate for platelet. Compared with 293T-αⅡbβ3 cells, the 293T-αⅡbβ3ΔNITY cells showed a partial impairment of adhesion and spreadability on immobilized fibrinogen. while the 293T-αⅡbβ3Δ754 cells and 293T-αⅡbβ3Δ759 cells failed to adhere or spread on immobilized fibrinogen.@*CONCLUSION@#To the cell spreading function mediated by integrin β3, RGT motif is vital, while NITY can be dispensable. These established 293T cell lines stably expressing different β3 mutants provide a solid basis for a further analysis of mass spectrometry.


Assuntos
Animais , Cricetinae , Humanos , Motivos de Aminoácidos , Células CHO , Adesão Celular , Cricetulus , Células HEK293 , Integrina beta3 , Genética , Metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Genética , Metabolismo , Transdução de Sinais
17.
Chinese Journal of Biotechnology ; (12): 1071-1078, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771821

RESUMO

The aim of this study is to investigate the effect of the chimeric intron in different directions on the expression of the nerve growth factor (NGF) in recombinant Chinese hamster ovary (CHO) cells. The chimeric intron that contained the splice sequence of the first intron of the human β-globin and the human immunoglobulin heavy chain variable region intron was used. NGF gene was cloned into the expression vectors containing the chimeric intron in the forward or reverse direction, followed by transfecting into CHO cells, and screened under G418 to produce the stable transfected CHO cells. Fluorescence quantitative PCR, ELISA, and Western blotting were performed to detect the recombinant NGF gene expression in CHO cells. The results showed that the chimeric introns could significantly enhance the expression of NGF in recombinant CHO cells. Moreover, the enhancing effect on NGF expression level by the intron in the forward direction showed stronger than that of the reverse direction both at mRNA and protein level. In conclusion, the chimeric intron could increase NGF expression in stably transfected CHO cells and the effect is associated with the direction of the intron insertion.


Assuntos
Animais , Cricetinae , Humanos , Animais Geneticamente Modificados , Células CHO , Cricetulus , Expressão Gênica , Íntrons , Transfecção
18.
Korean Journal of Nuclear Medicine ; : 144-153, 2018.
Artigo em Inglês | WPRIM | ID: wpr-786975

RESUMO

PURPOSE: Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.METHODS: We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.RESULTS: The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.CONCLUSION: ¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.


Assuntos
Animais , Cricetinae , Camundongos , Abdome , Aterosclerose , Células CHO , Cromatografia Líquida de Alta Pressão , Fluorescência , Rim Cefálico , Coração , Inflamação , Injeções Intravenosas , Iodo , Cinética , Lipoproteínas , Fígado , Pulmão , Métodos , Radioatividade , Baço , Estômago , Glândula Tireoide , Bexiga Urinária
19.
São Paulo; s.n; s.n; 2018. 93 p. ilus, graf, tab.
Tese em Português | LILACS | ID: biblio-967928

RESUMO

O fator de crescimento transformante beta tipo 1, TGF-ß1, é uma proteína extracelular homodimérica secretada por vários tipos celulares, que pode ter ação parácrina ou endócrina. Essa proteína está envolvida em processos celulares de diferenciação, proliferação, mobilidade e formação de matriz extracelular. Além disso, é parte importante dos processos de regeneração tecidual, atuando, de maneira decisiva, no reparo, atraindo macrófagos e fibroblastos para o local da injúria e estimulando a angiogênese. Assim, considerando o papel desse peptídeo no processo regenerativo, o uso de TGF-ß1 como proteína terapêutica na área de Bioengenharia Tecidual é bastante promissor. Apesar disso, a venda dessa proteína, para fins terapêuticos, é inexistente no mercado e a proteína recombinante vendida, que só pode ser utilizada em pesquisas científicas, não é produzida nacionalmente e chega a custar R$200.000,00/mg. Nesse contexto, o objetivo do presente trabalho é desenvolver uma metodologia de produção do fator recombinante TGF-ß1 em células de ovário de hamster chinês (CHO), visando à obtenção de níveis altos de rendimento, e, futuramente, a transferência da tecnologia de produção para a iniciativa privada, tornando possível seu uso na Medicina Regenerativa, sozinho ou em combinação com outros fatores de crescimento. O cDNA de TGF-ß1 foi amplificado a partir de um banco de cDNA humano e clonado no vetor proprietário pNU1 de expressão de mamífero. A construção pNU1/TGF-ß1 foi utilizada para transfectar estavelmente células CHO DG44 e uma estratégia de co-amplificação foi utilizada para selecionar células transfectantes com maior número de cópias da sequência correspondente a TGF-ß1. Estas culturas foram submetidas ao processo de amplificação gênica com concentrações crescentes de metotrexato. Ensaios de Western Blot e ELISA foram realizados utilizando-se o meio condicionado pelas populações selecionadas e por clones superprodutores. Entre os 41clones obtidos, cinco apresentaram maiores níveis de produção de TGF-ß1, entre 1.000 e 2.000 ng/mL. Estes clones foram selecionados para a realização de testes de atividade in vitro utilizando-se células A549, que permitem avaliar a transição epitélio-mesênquima. Um ensaio de cicatrização de feridas em peles do dorso de camundongos foi padronizado e utilizado para avaliar a atividade in vivo do clone que apresentou melhor resultado in vitro. A proteína TGF-ß1 foi parcialmente purificada por HPLC em uma coluna de afinidade. Portanto, a proteína TGF-ß1 humana recombinante foi produzida, apresentando atividade biológica in vitro e in vivo, sendo capaz de reparar eficientemente feridas cutâneas. Essa iniciativa pode oferecer aos pacientes uma alternativa para o tratamento de lesões teciduais, acelerando a cicatrização de feridas e o reparo de tecidos


The transforming growth factor beta 1, TGF-ß1, is a homodimeric extracellular protein secreted by several cell types, which may have paracrine or endocrine action. This protein is involved in cellular processes of differentiation, proliferation, mobility and formation of extracellular matrix. In addition, it is an important part of the tissue regeneration processes, acting decisively on repair, attracting macrophages and fibroblasts to the site of injury and stimulating angiogenesis. Therefore, considering the role of this peptide in the regenerative process and the use of TGF-ß1 as a therapeutic protein in the field of Tissue Bioengineering is very promising. Despite this, the sale of this protein for therapeutic purposes is nonexistent in the market and the recombinant protein available in the market, which can only be used in scientific research, is not produced nationally and the costs are in the order of R$ 200,000.00/mg. In this context, the objective of the present work is to develop a methodology for the production of the TGF-ß1 recombinant factor in Chinese hamster ovary (CHO) cells, aiming at obtaining high yields, and, in the future, transfering the production technology to the private initiative, allowing its use in Regenerative Medicine, alone or in combination with other growth factors. The TGF-ß1 cDNA was amplified from a human cDNA library and cloned into the proprietary pNU1 mammalian expression vector. The pNU1/TGF-ß1 construct was used to stably transfect CHO DG44 cells, and a co-amplification strategy was used to select transfectant cells with the largest number of gene copies. These cultures were subjected to the process of gene amplification with methotrexate. Western Blot and ELISA were used to assay the conditioned medium obtained from the selected cell populations and from overproducing cell clones. Among the 41 clones obtained, five presented higher levels of TGF-ß1 production, between 1,000 and 2,000 ng/mL. These clones were selected for in vitro activity testing using A549 cells to evaluate the epithelial-mesenchymal transition. Awound healing assay on mouse dorsal skin was standardized and used to evaluate the in vivo activity of the cell clone which displayed the highest result in vitro. The TGF-ß1 protein was partially purified by HPLC on an affinity column. Therefore, the recombinant human TGF-ß1 protein was produced and shown to display biological activity both in vitro and in vivo, being able to eficiently repair cutaneous wounds. This initiative may provide patients with an alternative treatment for tissue damage, accelerating wound healing and tissue repair


Assuntos
Animais , Camundongos , Células CHO/química , Fator de Crescimento Transformador beta1/análise , Ensaio de Imunoadsorção Enzimática/instrumentação , Western Blotting/instrumentação , Medicina Regenerativa/tendências , Proteínas de Ligação a TGF-beta Latente
20.
São Paulo; s.n; s.n; 2018. 93 p. tab, ilus, graf.
Tese em Português | LILACS | ID: biblio-998850

RESUMO

O fator de crescimento transformante beta tipo 1, TGF-ß1, é uma proteína extracelular homodimérica secretada por vários tipos celulares, que pode ter ação parácrina ou endócrina. Essa proteína está envolvida em processos celulares de diferenciação, proliferação, mobilidade e formação de matriz extracelular. Além disso, é parte importante dos processos de regeneração tecidual, atuando, de maneira decisiva, no reparo, atraindo macrófagos e fibroblastos para o local da injúria e estimulando a angiogênese. Assim, considerando o papel desse peptídeo no processo regenerativo, o uso de TGF-ß1 como proteína terapêutica na área de Bioengenharia Tecidual é bastante promissor. Apesar disso, a venda dessa proteína, para fins terapêuticos, é inexistente no mercado e a proteína recombinante vendida, que só pode ser utilizada em pesquisas científicas, não é produzida nacionalmente e chega a custar R$200.000,00/mg. Nesse contexto, o objetivo do presente trabalho é desenvolver uma metodologia de produção do fator recombinante TGF-ß1 em células de ovário de hamster chinês (CHO), visando à obtenção de níveis altos de rendimento, e, futuramente, a transferência da tecnologia de produção para a iniciativa privada, tornando possível seu uso na Medicina Regenerativa, sozinho ou em combinação com outros fatores de crescimento. O cDNA de TGF-ß1 foi amplificado a partir de um banco de cDNA humano e clonado no vetor proprietário pNU1 de expressão de mamífero. A construção pNU1/TGF-ß1 foi utilizada para transfectar estavelmente células CHO DG44 e uma estratégia de co-amplificação foi utilizada para selecionar células transfectantes com maior número de cópias da sequência correspondente a TGF-ß1. Estas culturas foram submetidas ao processo de amplificação gênica com concentrações crescentes de metotrexato. Ensaios de Western Blot e ELISA foram realizados utilizando-se o meio condicionado pelas populações selecionadas e por clones superprodutores. Entre os 41clones obtidos, cinco apresentaram maiores níveis de produção de TGF-ß1, entre 1.000 e 2.000 ng/mL. Estes clones foram selecionados para a realização de testes de atividade in vitro utilizando-se células A549, que permitem avaliar a transição epitélio-mesênquima. Um ensaio de cicatrização de feridas em peles do dorso de camundongos foi padronizado e utilizado para avaliar a atividade in vivo do clone que apresentou melhor resultado in vitro. A proteína TGF-ß1 foi parcialmente purificada por HPLC em uma coluna de afinidade. Portanto, a proteína TGF-ß1 humana recombinante foi produzida, apresentando atividade biológica in vitro e in vivo, sendo capaz de reparar eficientemente feridas cutâneas. Essa iniciativa pode oferecer aos pacientes uma alternativa para o tratamento de lesões teciduais, acelerando a cicatrização de feridas e o reparo de tecidos


The transforming growth factor beta 1, TGF-ß1, is a homodimeric extracellular protein secreted by several cell types, which may have paracrine or endocrine action. This protein is involved in cellular processes of differentiation, proliferation, mobility and formation of extracellular matrix. In addition, it is an important part of the tissue regeneration processes, acting decisively on repair, attracting macrophages and fibroblasts to the site of injury and stimulating angiogenesis. Therefore, considering the role of this peptide in the regenerative process and the use of TGF-ß1 as a therapeutic protein in the field of Tissue Bioengineering is very promising. Despite this, the sale of this protein for therapeutic purposes is nonexistent in the market and the recombinant protein available in the market, which can only be used in scientific research, is not produced nationally and the costs are in the order of R$ 200,000.00/mg. In this context, the objective of the present work is to develop a methodology for the production of the TGF-ß1 recombinant factor in Chinese hamster ovary (CHO) cells, aiming at obtaining high yields, and, in the future, transfering the production technology to the private initiative, allowing its use in Regenerative Medicine, alone or in combination with other growth factors. The TGF-ß1 cDNA was amplified from a human cDNA library and cloned into the proprietary pNU1 mammalian expression vector. The pNU1/TGF-ß1 construct was used to stably transfect CHO DG44 cells, and a co-amplification strategy was used to select transfectant cells with the largest number of gene copies. These cultures were subjected to the process of gene amplification with methotrexate. Western Blot and ELISA were used to assay the conditioned medium obtained from the selected cell populations and from overproducing cell clones. Among the 41 clones obtained, five presented higher levels of TGF-ß1 production, between 1,000 and 2,000 ng/mL. These clones were selected for in vitro activity testing using A549 cells to evaluate the epithelial-mesenchymal transition. Awound healing assay on mouse dorsal skin was standardized and used to evaluate the in vivo activity of the cell clone which displayed the highest result in vitro. The TGF-ß1 protein was partially purified by HPLC on an affinity column. Therefore, the recombinant human TGF-ß1 protein was produced and shown to display biological activity both in vitro and in vivo, being able to eficiently repair cutaneous wounds. This initiative may provide patients with an alternative treatment for tissue damage, accelerating wound healing and tissue repair


Assuntos
Animais , Camundongos , Células CHO/citologia , Medicina Regenerativa/classificação , Fator de Crescimento Transformador beta1/agonistas , Mamíferos , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Western Blotting , Cromatografia Líquida de Alta Pressão/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA