Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Biomedical and Environmental Sciences ; (12): 71-84, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1007909

RESUMO

OBJECTIVE@#To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).@*METHODS@#The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.@*RESULTS@#The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.@*CONCLUSION@#Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Assuntos
Humanos , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Exossomos/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Braz. j. biol ; 84: e250556, 2024. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360208

RESUMO

Exosomes are 30-120nm bio particles transferred from donor to recipient cells leading to modification in their regulatory mechanisms depending upon the coded message in the form of loaded biomolecule. Cancer cells derived exosomes the true representatives of the parent cells have been found to modify the tumor surrounding/distinct regions and participate in metastasis, angiogenesis and immune suppression. Tis study was aimed to study the effects of tumor mice derived exosomes on the normal mice spleen isolated T cells by using co-culture experiments and flow cytometer analysis. We mainly focused on some of the T cells population and cytokines including IFN-γ, FOXP3+ regulatory T (Treg) cells and KI67 (proliferation marker). Overall results indicated random changes in different set of experiments, where the cancer derived exosomes reduced the IFN-γ expression in both CD4 and CD8 T cells, similarly the Treg cells were also found decreased in the presence of cancer exosomes. No significant changes were observed on the Ki67 marker expression. Such studies are helpful in understanding the role of cancer exosomes in immune cells suppression in tumor microenvironment. Cancer exosomes will need to be validated in vivo and in vitro on a molecular scale in detail for clinical applications.


Os exossomos são biopartículas de 30-120 nm transferidas de células doadoras para células receptoras, levando à modificação em seus mecanismos reguladores, dependendo da mensagem codificada na forma de biomolécula carregada. Verificou-se que exossomos derivados de células cancerosas ­ os verdadeiros representantes das células-mãe ­ modificam as regiões circundantes / distintas do tumor e participam da metástase, angiogênese e imunossupressão. Este estudo teve como objetivo estudar os efeitos de exossomos derivados de camundongos com tumor nas células T isoladas de baço de camundongos normais, usando experimentos de cocultura e análise de citômetro de fluxo. Concentrou-se, principalmente, em algumas populações de células T e citocinas, incluindo IFN-γ, células T reguladoras FOXP3 + (Treg) e KI67 (marcador de proliferação). Os resultados gerais indicaram mudanças aleatórias em diferentes conjuntos de experimentos, em que os exossomos derivados de câncer reduziram a expressão de IFN-γ em células T CD4 e CD8, da mesma forma que as células Treg também foram encontradas diminuídas na presença de exossomos de câncer. Nenhuma mudança significativa foi observada na expressão do marcador Ki67. Esses dados são úteis para a compreensão do papel dos exossomos do câncer na supressão de células do sistema imunológico no microambiente tumoral. Exossomos de câncer precisarão ser validados in vivo e in vitro em escala molecular com detalhes para aplicações clínicas.


Assuntos
Animais , Camundongos , Exossomos , Microambiente Tumoral , Sistema Imunitário , Metástase Neoplásica , Neoplasias
3.
International Journal of Oral Science ; (4): 4-4, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010717

RESUMO

Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.


Assuntos
Humanos , Exossomos , Qualidade de Vida , Vesículas Extracelulares , Biomarcadores , Comunicação Celular , Neoplasias Bucais
4.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1550058

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Neomicina/metabolismo , Neomicina/toxicidade , Exossomos/metabolismo , Autofagia/fisiologia , Células Ciliadas Auditivas
5.
Journal of Zhejiang University. Medical sciences ; (6): 766-776, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1009947

RESUMO

OBJECTIVES@#To explore the effect of hydrogel loaded with exosomes from Wharton's Jelly-derived mesenchymal stem cell (WJMSC) on wound healing.@*METHODS@#Exosomes were extracted from WJMSC, and the morphology and size of WJMSC-derived exosomes (WEX) were analyzed by transmission electron microscopy and nanoparticle size analyzer, respectively. The surface markers CD9, CD81, and Calnexin of WEX were detected by Western blotting. Exosome-loaded alginate hydrogel (WEX-gel) was prepared; its morphology was studied by scanning electron microscope, and its rheological behavior was examined by a rheometer. The in vitro drug release performance of WEX-gel was investigated by BCA method. RAW264.7 cells were treated with alginate hydrogel, WEX and WEX-gel, respectively; and the expression of CD86 and CD206 in macrophages was detected by flow cytometry. A full-thickness skin wound model was established in mice; the model mice were randomly divided into blank control group, WEX control group and WEX-gel group, and PBS, WEX and WEX-gel were applied to the wound area of mice, respectively. On day 3, the skin tissue of mice was excised, and the antibacterial effect of WEX hydrogel was evaluated by plate counting. On day 15, the mice were euthanized and the percentage of residual wounds was calculated. The histological changes of the skin wound were observed after hematoxylin and eosin (HE) and Masson stainings. The expression of CD86, CD206, CD31 and vascular endothelial growth factor (VEGF) in the skin wound tissue was detected by immunohistochemistry.@*RESULTS@#Exosomes were successfully extracted from WJMSC. WEX-gel presented a regular three-dimensional network structure, good rheology and controlled drug release performance. WEX-gel promoted the polarization of RAW264.7 cells from the M1 phenotype to M2 phenotype in vitro. The residual wound percentage in blank control group, WEX control group and WEX-gel group were (27.5±3.4)%, (15.3±1.2)% and (7.6±1.1)%, respectively (P<0.05). The antibacterial property of WEX-gel is better than that of WEX (P<0.05). The dermis thickness, the number of new hair follicles, and the rate of collagen deposition in the WEX-gel group were significantly higher than those in the other two groups (all P<0.05). The expression of CD206, CD31 and VEGF in skin wound tissue was higher and the expression of CD86 was lower in WEX-gel group than those in other two groups (all P<0.05).@*CONCLUSIONS@#WEX-gel can significantly promote wound healing in mice by regulating the polarization of macrophages.


Assuntos
Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular , Geleia de Wharton , Exossomos , Hidrogéis , Cicatrização/fisiologia , Células-Tronco Mesenquimais , Antibacterianos , Alginatos
6.
Journal of Zhejiang University. Medical sciences ; (6): 429-438, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1009905

RESUMO

Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.


Assuntos
Humanos , Exossomos , Neoplasias/genética , Biomarcadores Tumorais , Líquidos Corporais , RNA não Traduzido/genética , Microambiente Tumoral
7.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1169-1176, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1009041

RESUMO

OBJECTIVE@#To review the research progress in biotherapy of rotator cuff injury in recent years, in order to provide help for clinical decision-making of rotator cuff injury treatment.@*METHODS@#The literature related to biotherapy of rotator cuff injury at home and abroad in recent years was widely reviewed, and the mechanism and efficacy of biotherapy for rotator cuff injury were summarized from the aspects of platelet-rich plasma (PRP), growth factors, stem cells, and exosomes.@*RESULTS@#In order to relieve patients' pain, improve upper limb function, and improve quality of life, the treatment of rotator cuff injury experienced an important change from conservative treatment to open surgery to arthroscopic rotator cuff repair. Arthroscopic rotator cuff repair plus a variety of biotherapy methods have become the mainstream of clinical treatment. All kinds of biotherapy methods have ideal mid- and long-term effectiveness in the repair of rotator cuff injury. The biotherapy method to promote the healing of rotator cuff injury is controversial and needs to be further studied.@*CONCLUSION@#All kinds of biotherapy methods show a good effect on the repair of rotator cuff injury. It will be an important research direction to further develop new biotherapy technology and verify its effectiveness.


Assuntos
Humanos , Lesões do Manguito Rotador/terapia , Qualidade de Vida , Artroplastia , Exossomos , Procedimentos Neurocirúrgicos
8.
Journal of Biomedical Engineering ; (6): 770-777, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008898

RESUMO

This research aims to investigate the encapsulation and controlled release effect of the newly developed self-assembling peptide R-LIFE-1 on exosomes. The gelling ability and morphological structure of the chiral self-assembling peptide (CSAP) hydrogel were examined using advanced imaging techniques, including atomic force microscopy, transmission electron microscopy, and cryo-scanning electron microscopy. The biocompatibility of the CSAP hydrogel was assessed through optical microscopy and fluorescent staining. Exosomes were isolated via ultrafiltration, and their quality was evaluated using Western blot analysis, nanoparticle tracking analysis, and transmission electron microscopy. The controlled release effect of the CSAP hydrogel on exosomes was quantitatively analyzed using laser confocal microscopy and a BCA assay kit. The results revealed that the self-assembling peptide R-LIFE-1 exhibited spontaneous assembly in the presence of various ions, leading to the formation of nanofibers. These nanofibers were cross-linked, giving rise to a robust nanofiber network structure, which further underwent cross-linking to generate a laminated membrane structure. The nanofibers possessed a large surface area, allowing them to encapsulate a substantial number of water molecules, thereby forming a hydrogel material with high water content. This hydrogel served as a stable spatial scaffold and loading matrix for the three-dimensional culture of cells, as well as the encapsulation and controlled release of exosomes. Importantly, R-LIFE-1 demonstrated excellent biocompatibility, preserving the growth of cells and the biological activity of exosomes. It rapidly formed a three-dimensional network scaffold, enabling the stable loading of cells and exosomes, while exhibiting favorable biocompatibility and reduced cytotoxicity. In conclusion, the findings of this study support the notion that R-LIFE-1 holds significant promise as an ideal tissue engineering material for tissue repair applications.


Assuntos
Exossomos , Preparações de Ação Retardada , Hidrogéis , Microscopia Eletrônica de Varredura , Peptídeos
9.
China Journal of Chinese Materia Medica ; (24): 5977-5984, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008795

RESUMO

Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.


Assuntos
Animais , Exossomos/metabolismo , Proteínas/metabolismo , Plantas/metabolismo , Ácidos Nucleicos , Nanopartículas
10.
Acta Academiae Medicinae Sinicae ; (6): 827-832, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008137

RESUMO

Bronchial asthma is a heterogeneous chronic inflammatory disease involving multiple immune cells and structural cells.It is characterized by airflow limitation,airway hyperresponsiveness,and airway remodeling,with complex pathogenesis.In recent years,the research on exosomes has developed rapidly.Exosomes are small vesicles secreted by a variety of cells and are naturally found in various biological fluids,with stability and biocompatibility.Exosomes from different cells are involved in pathophysiological processes such as airway inflammation,remodeling,and hyperresponsiveness through specific mechanisms and play a regulatory role in multiple links in bronchial asthma.This review focuses on the role of exosomes from different cells in the pathogenesis of bronchial asthma.


Assuntos
Humanos , Exossomos/patologia , Asma , Pulmão/patologia , Inflamação , Doença Crônica
11.
Biomedical and Environmental Sciences ; (12): 1136-1151, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007893

RESUMO

OBJECTIVE@#Exosomal long noncoding RNAs (lncRNAs) are the key to diagnosing and treating various diseases. This study aimed to investigate the diagnostic value of plasma exosomal lncRNAs in white matter hyperintensities (WMH).@*METHODS@#We used high-throughput sequencing to determine the differential expression (DE) profiles of lncRNAs in plasma exosomes from WMH patients and controls. The sequencing results were verified in a validation cohort using qRT-PCR. The diagnostic potential of candidate exosomal lncRNAs was proven by binary logistic analysis and receiver operating characteristic (ROC) curves. The diagnostic value of DE exo-lncRNAs was determined by the area under the curve (AUC). The WMH group was then divided into subgroups according to the Fazekas scale and white matter lesion site, and the correlation of DE exo-lncRNAs in the subgroup was evaluated.@*RESULTS@#In our results, four DE exo-lncRNAs were identified, and ROC curve analysis revealed that exo-lnc_011797 and exo-lnc_004326 exhibited diagnostic efficacy for WMH. Furthermore, WMH subgroup analysis showed exo-lnc_011797 expression was significantly increased in Fazekas 3 patients and was significantly elevated in patients with paraventricular matter hyperintensities.@*CONCLUSION@#Plasma exosomal lncRNAs have potential diagnostic value in WMH. Moreover, exo-lnc_011797 is considered to be a predictor of the severity and location of WMH.


Assuntos
Humanos , RNA Longo não Codificante/genética , Substância Branca , Área Sob a Curva , Exossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala
12.
Chinese Medical Journal ; (24): 2596-2608, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1007557

RESUMO

BACKGROUND@#Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS.@*METHODS@#SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement.@*RESULTS@#SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression.@*CONCLUSION@#Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.


Assuntos
Camundongos , Animais , Humanos , Síndrome de Sjogren/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Junções Íntimas/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos NOD , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Xerostomia , Fosfatidilinositol 3-Quinase , MicroRNAs/genética
13.
Journal of Biomedical Engineering ; (6): 95-102, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970678

RESUMO

The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.


Assuntos
Animais , Ratos , Apoptose , Condrócitos , Campos Eletromagnéticos , Exossomos/fisiologia , Células-Tronco Mesenquimais/metabolismo
14.
Chinese Journal of Biotechnology ; (12): 275-285, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970374

RESUMO

The aim of this study was to investigate the therapeutic effects and potential mechanism of c(RGDyK) peptide modified mesenchymal stem cell exosomes loaded with ginsenoside Rg1 (G-Rg1) on ischemic stroke. Thread-tying method was used to establish SD rats transient middle cerebral occlusion model (tMCAO). The model rats were randomly divided into tMCAO group, Exo group, free G-Rg1 group, Exo-Rg1 group and cRGD-Exo-Rg1 group, and sham group was used as control. The infarct volume was measured by 2, 3, 5-triphenyltetrachloride (TTC) staining, the changes of neuron and endothelium were observed by immunofluorescence, and the expression of related proteins was detected by Western blotting. The results showed that cRGD-Exo-Rg1 up-regulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF-1α) by activating PI3K/AKT pathway, thus promoting angiogenesis and neurogenesis, effectively reducing the volume of cerebral infarction and improving neural function. In addition, the delivery of cRGD-Exo-Rg1 to ischemic brain tissue up-regulated the expression of occludin and claudin-5, and reduced the injury of blood-brain barrier. Taken together, cRGD-Exo-Rg1 was effective in the treatment of ischemic stroke by promoting angiogenesis and neurogenesis, which provided experimental evidence for the potential clinical benefits of other neuroprotective therapies.


Assuntos
Ratos , Animais , AVC Isquêmico/tratamento farmacológico , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exossomos/metabolismo , Ginsenosídeos/uso terapêutico
15.
Chinese Journal of Oncology ; (12): 50-55, 2023.
Artigo em Chinês | WPRIM | ID: wpr-969805

RESUMO

Objective: To observe the effects of exosomes derived from human umbilical cord mesenchymal stem cells on the proliferation and invasion of pancreatic cancer cells, and to analyze the contents of exosomes and explore the mechanisms affecting pancreatic cancer cells. Methods: Exosomes extracted from human umbilical cord mesenchymal stem cells were added to pancreatic cancer cells BxPC3, Panc-1 and mouse models of pancreatic cancer, respectively. The proliferative activity and invasion abilities of BxPC3 and Panc-1 cells were measured by cell counting kit-8 (CCK-8) and Transwell assays. The expressions of miRNAs in exosomes were detected by high-throughput sequencing. GO and KEGG were used to analyze the related functions and the main metabolic pathways of target genes with high expressions of miRNAs. Results: The results of CCK-8 cell proliferation assay showed that the absorbance of BxPC3 and Panc-1 cells in the hucMSCs-exo group was significantly higher than that in the control group [(4.68±0.09) vs. (3.68±0.01), P<0.05; (5.20±0.20) vs. (3.45±0.17), P<0.05]. Transwell test results showed that the number of invasion cells of BxPC3 and Panc-1 in hucMSCs-exo group was significantly higher than that in the control group (129.40±6.02) vs. (89.40±4.39), P<0.05; (134.40±7.02) vs. (97.00±6.08), P<0.05. In vivo experimental results showed that the tumor volume and weight in the exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) group were significantly greater than that in the control group [(884.57±59.70) mm(3) vs. (695.09±57.81) mm(3), P<0.05; (0.94±0.21) g vs. (0.60±0.13) g, P<0.05]. High-throughput sequencing results showed that miR-148a-3p, miR-100-5p, miR-143-3p, miR-21-5p and miR-92a-3p were highly expressed. GO and KEGG analysis showed that the target genes of these miRNAs were mainly involved in the regulation of glucosaldehylation, and the main metabolic pathways were ascorbic acid and aldehyde acid metabolism, which were closely related to the development of pancreatic cancer. Conclusion: Exosomes derived from human umbilical cord mesenchymal stem cells can promote the growth of pancreatic cancer cells and the mechanism is related to miRNAs that are highly expressed in exosomes.


Assuntos
Camundongos , Animais , Humanos , MicroRNAs/metabolismo , Exossomos/genética , Sincalida/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
16.
Chinese Critical Care Medicine ; (12): 586-591, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982637

RESUMO

OBJECTIVE@#To investigate the effect of circulating exosomes (EXO) on T cell function in patients with sepsis.@*METHODS@#Plasma EXO were obtained by ultracentrifugation from 10 patients with sepsis admitted to the emergency intensive care unit of Guangdong Provincial People's Hospital Affiliated to Southern Medical University. Transmission electron microscopy observation, nanoparticle tracking analysis (NTA), and Western blotting were used to detect EXO markers to identify their characteristics. Furthermore, peripheral blood mononuclear cells (PBMC) were isolated from the peripheral blood of 5 healthy volunteers, primary T cells were sorted by magnetic beads and expanded in vitro. After 24 hours of intervention with different doses (0, 1, 2.5, 5, 10 mg/L) of circulating EXO in patients with sepsis, T-cell activity was assessed using a cell counting kit-8 (CCK-8). The expression of T cell activation indicators CD69 and CD25 were observed using flow cytometry. Additional evaluations were performed on immunosuppressive indicators including the expression of programmed cell death 1 (PD-1) in CD4+ T cells and the proportion of regulatory T cell (Treg).@*RESULTS@#The identification results confirmed that the successful isolation of EXO from the plasma of sepsis patients. The expression level of circulating EXO in sepsis patients was higher than that in healthy control group (mg/L: 48.78±5.14 vs. 22.18±2.25, P < 0.01). After 24 hours of intervention with 5 mg/L of plasma EXO from sepsis patients, T cells activity began to show suppression [(85.84±0.56)% vs. (100.00±0.00)%, P < 0.05]. As the dosage increased, after 24 hours of intervention with 10 mg/L of EXO, T cells activity was significantly suppressed [(72.44±2.36)% vs. (100.00±0.00)%, P < 0.01]. Compared with the healthy control group, after T cells intervention with plasma EXO from sepsis patients, the expression of early activation marker CD69 was significantly reduced [(52.87±1.29)% vs. (67.13±3.56)%, P < 0.05]. Meanwhile, there was an upregulation of PD-1 expression in T cells [(57.73±3.06)% vs. (32.07±0.22)%, P < 0.01] and an increase in the proportion of Treg [(54.67±1.19)% vs. (24.60±3.51)%, P < 0.01]. However, the expression of the late activation marker CD25 remained stable [(84.77±3.44)% vs. (85.93±2.32)%, P > 0.05].@*CONCLUSIONS@#Circulating EXO in sepsis patients induce T cell dysfunction, which may be a novel mechanism lead to immunosuppression in sepsis.


Assuntos
Humanos , Leucócitos Mononucleares , Exossomos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/metabolismo , Sepse/metabolismo
17.
Journal of Central South University(Medical Sciences) ; (12): 771-781, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982347

RESUMO

Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.


Assuntos
Humanos , Exossomos/fisiologia , Vesículas Extracelulares/fisiologia , Sistema Nervoso Central , Transtornos Mentais , Barreira Hematoencefálica
18.
Journal of Experimental Hematology ; (6): 643-648, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982110

RESUMO

OBJECTIVE@#To explore the expression level of exosome derived miR-181b-5p in different disease stages of children with acute lymphoblastic leukemia and its relationship with clinical characteristics.@*METHODS@#Bone marrow plasma samples of 86 children with ALL were collected. Exosomes were extracted by exosome extraction kit, and RNA in exosomes was extracted by TRIzol method. The levels of miR-181b-5p in the blood plasma exosomes of the patients in the newly diagnosed group, relapse group, remission group and control group were detected by qRT- PCR. The difference of miR-181b-5p expression level in each group was compared and analyzed, and the relationship between miR-181b-5p expression level and clinical characteristics was analyzed.@*RESULTS@#The expression level of exosomal miR-181b-5p in the newly diagnosed group and the relapsed group was significantly lower than that in the remission group and the control group (P< 0.05). The expression level of exosomal miR-181b-5p in T-ALL children was higher than that in B-ALL children (P<0.05). The expression level of plasma exosomal miR-181b-5p in male children was higher than that in female children (P<0.01).@*CONCLUSION@#Exosome derived miR-181b-5p changes dynamically in the course of ALL children, and can be used as a marker miRNA to monitor disease status. Exosomes can transmit information in the tumor microenvironment and serve as a potential carrier for biomolecular targeted therapy.


Assuntos
Humanos , Masculino , Feminino , Criança , Exossomos/metabolismo , Relevância Clínica , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Microambiente Tumoral
19.
Asian Journal of Andrology ; (6): 389-397, 2023.
Artigo em Inglês | WPRIM | ID: wpr-981936

RESUMO

Male reproductive infections are known to shape the immunological homeostasis of the testes, leading to male infertility. However, the specific pathogenesis of these changes remains poorly understood. Exosomes released in the inflammatory microenvironment are important in communication between the local microenvironment and recipient cells. Here, we aim to identify the immunomodulatory properties of inflammatory testes-derived exosomes (IT-exos) and explore their underlying mechanisms in orchitis. IT-exos were isolated using a uropathogenic Escherichia coli (UPEC)-induced orchitis model and confirmed that IT-exos promoted proinflammatory M1 activation with increasing expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. We further used small RNA sequencing to identify the differential miRNA profiles in exosomes and primary testicular macrophages (TMs) from normal and UPEC-infected testes, respectively, and identified that miR-155-5p was highly enriched in IT-exos and TMs from inflammatory testes. Further study of bone marrow derived macrophages (BMDMs) transfected with miR-155-5p mimic showed that macrophages polarized to proinflammatory phenotype. In addition, the mice that were administrated IT-exos showed remarkable activation of TM1-like macrophages; however, IT-exos with silencing miR-155-5p showed a decrease in proinflammatory responses. Overall, we demonstrate that miR-155-5p delivered by IT-exos plays an important role in the activation of TM1 in UPEC-induced orchitis. Our study provides a new perspective on the immunological mechanisms underlying inflammation-related male infertility.


Assuntos
Humanos , Masculino , Camundongos , Animais , Orquite , Escherichia coli Uropatogênica/metabolismo , MicroRNAs/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , Fenótipo , Infertilidade Masculina/metabolismo
20.
Chinese Journal of Cellular and Molecular Immunology ; (12): 516-525, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981894

RESUMO

Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.


Assuntos
Camundongos , Animais , Miócitos Cardíacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miocardite/patologia , Exossomos/metabolismo , Proteína X Associada a bcl-2/metabolismo , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA