Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1188-1201, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970432

RESUMO

To investigate the formation of polystyrene nanoplastic-plant protein corona and its potential impact on plants, three differently modified polystyrene nanoplastics with an average particle size of 200 nm were taken to interact with the leaf proteins of Impatiens hawkeri for 2 h, 4 h, 8 h, 16 h, 24 h, and 36 h, respectively. The morphological changes were observed by scanning electron microscopy (SEM), the surface roughness was determined by atomic force microscopy (AFM), the hydrated particle size and zeta potential were determined by nanoparticle size and zeta potential analyzer, and the protein composition of the protein corona was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteins were classified in terms of biological processes, cellular components, and molecular functions to study the adsorption selection of nanoplastics to proteins, investigate the formation and characteristics of polystyrene nanoplastic-plant protein corona and predict the potential impact of protein corona on plants. The results showed that the morphological changes of the nanoplastics became clearer as the reaction time extends, as evidenced by the increase in size and roughness and the enhancement of stability, thus demonstrating the formation of protein corona. In addition, the transformation rate from soft to hard protein corona was basically the same for the three polystyrene nanoplastics in the formation of protein corona with leaf proteins under the same protein concentration conditions. Moreover, in the reaction with leaf proteins, the selective adsorption of the three nanoplastics to proteins with different isoelectric points and molecular weights differed, and the particle size and stability of the final formed protein corona also differed. Since a large portion of the protein fraction in protein corona is involved in photosynthesis, it is hypothesized that the formation of the protein corona may affect photosynthesis in I. hawkeri.


Assuntos
Poliestirenos/química , Coroa de Proteína/química , Microplásticos , Proteínas de Plantas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nanopartículas/química
2.
Cienc. tecnol. salud ; 8(1)2021. il 27 c
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1352956

RESUMO

Polymeric membrane technologies demand the synthesis of new polymers to enhance their equilibrium, thermal, and transport properties. Therefore, the focus of this investigation was the evaluation of the equilibrium and thermal properties of a sulfonated fluoroblock copolymer blend membrane composed of sulfonated poly(styre-ne-isobutylene-styrene) (SIBS SO3H) and a novel sulfonated fluoroblock copolymer composed of poly(4-fluo-rostyrene) (P4FS), poly(styrene) (PS) and poly(isobutylene) (PIB). The fluoroblock copolymer was synthesized using Atom Transfer Radical Polymerization (ATRP) and cationic polymerization. First, the molecular weight and the thermal stability of the block copolymer were determined using Gel Permeation Chromatography (GPC) and Thermogravimetric Analysis (TGA). Second, the chemical composition was monitored utilizing Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The molecular weight of P4FS-b-PS was Mn ~ 36,100; this value increased 8% after the cationic polymerization. The equilibrium properties of the membrane were evaluated using the water uptake and Ion-Exchange Capacity. The degradation behavior and the thermal transitions were determined using TGA and Differential Scanning Calorimetry (DSC), respectively. This newly membrane exhibited water uptake higher than 608% related to the improvement of 36% in the ion-exchange capacity and the increment of 25.31% and 25.24% in the energy required to produce the thermal transitions induced by the addition of the sulfonated fluoroblock copolymer.


La tecnología de membranas poliméricas requiere de la síntesis de nuevos polímeros que mejoren sus propiedades de equilibrio, térmicas y de transporte. Esta investigación tuvo como objetivo determinar las pro-piedades de equilibrio y térmicas de una membrana compuesta de poli(estireno-isobutileno-estireno) sulfonado (SIBS SO3H) y un fluoropolímero en bloque sulfonado compuesto de poli(4-fluorostireno) (P4FS), poli(estireno) (PS) y poli(isobutileno) (PIB). El fluoropolímero en bloque se sintetizó utilizando la técnica de polimerización radical por transferencia atómica (ATRP por sus siglas en inglés) y polimerización catiónica. El peso molecular y la estabilidad térmica del fluoropolímero en bloque fueron determinadas por medio de Cromatografía de Permeación en Gel (GPC) y un análisis termogravimétrico (TGA). La composición química se monitorizó utilizando espectroscopía infrarroja por transformada de Fourier (FTIR) y espectroscopía de Resonancia Magnética Nuclear (RMN). El peso molecular de P4FS-b-PS fue Mn ~ 36,100; este valor aumentó un 8% después de la polimerización catiónica. Las propiedades de equilibrio de la membrana fueron evaluadas por medio de la absorción de agua y la capacidad de intercambio iónico. El comportamiento de degradación y las transiciones térmicas se determinaron utilizando TGA y Calorimetría Diferencial de Barrido (DSC). Esta nueva membrana exhibió una absorción de agua mayor del 608% relacionada con la mejora del 36% en la capacidad de intercambio iónico y el incremento en 25.31% y 25.24% en la energía requerida para producir las transiciones termales inducidas por la adición del fluoropolímero sulfonado en bloque.


Assuntos
Polímeros/química , Membranas Artificiais , Polímeros/síntese química , Poliestirenos/química , Polimerização , Absorção Fisico-Química , Troca Iônica , Peso Molecular
3.
Artigo em Inglês | IMSEAR | ID: sea-113983

RESUMO

Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.


Assuntos
Adsorção , Carvão Vegetal/química , Clorofenóis/química , Cinética , Poliestirenos/química , Polivinil/química , Resinas Sintéticas/química , Temperatura , Termodinâmica , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA