Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
São José dos Campos; s.n; 2024. 86 p. ilus, tab.
Tese em Português | LILACS, BBO | ID: biblio-1551231

RESUMO

A eficácia dos implantes osseointegrados é amplamente reconhecida na literatura científica. Contudo, infiltrações bacterianas na junção implante-pilar podem desencadear inflamação nos tecidos circundantes, contribuindo para a evolução de condições mais sérias, como a peri-implantite. O objetivo desse estudo foi produzir complexos polieletrólitos (PECs) de quitosana (Q) e xantana (X) em forma de membranas, carregá-las com ativos naturais e sintéticos antimicrobianos, caracterizálas estruturalmente e avaliá-las frente a degradação enzimática, cinética de liberação e ações antimicrobianas com finalidade de aplicação para drug delivery. Membranas de QX a 1% (m/v) foram produzidas em três proporções, totalizando doze grupos experimentais: QX (1:1); QX (1:2), QX (2:1), QX-P (com própolis) (1:1); QX-P (1:2); QX-P (2:1); QX-C (com canela) (1:1); QX-C (1:2); QX-C (2:1) e CLX (com clorexidina 0,2%) (1:1); CLX (1:2); CLX (2:1). Para os estudos de caracterização foram feitas análises da espessura em estado seco; análises morfológicas superficial e transversal em Microscopia Eletrônica de Varredura (MEV); análise estrutural de espectroscopia de infravermelho por transformada de Fourier (FTIR); análise de degradação por perda de massa sob ação da enzima lisozima; e análise da cinética de liberação dos ativos em saliva artificial. Para os testes microbiológicos, análises de verificação de halo de inibição e ação antibiofilme foram feitas contra cepas de Staphylococcus aureus (S. aureus) e Escherichia coli (E. coli). Os resultados demonstraram que a espessura das membranas variou conforme a proporção, sendo que o grupo QX (1:2) apresentou a maior média de 1,022 mm ± 0,2, seguida respectivamente do QX (1:1) com 0,641 mm ± 0,1 e QX (2:1) com 0,249 mm ± 0,1. Nas imagens de MEV é possível observar uma maior presença de fibras, rugosidade e porosidade nos grupos QX (1:2) e QX (1:1) respectivamente, e, no QX (2:1) uma superfície mais lisa, uniforme e fina. No FTIR foram confirmados os picos característicos dos materiais isoladamente, além de observar as ligações iônicas que ocorreram para formação dos PECs. Na análise de degradação, os grupos com ativos naturais adicionados tiveram melhores taxas de sobrevida do que os grupos QX. No teste de liberação, os grupos QX-P tiveram uma cinética mais lenta que os QX-C, cuja liberação acumulada de 100% foi feita em 24 h. Já nos testes do halo inibitório, somente os grupos CLX tiveram ação sobre as duas cepas, e os QX-P tiveram sobre S. aureus. Nas análises antibiofilme, os grupos CLX apresentaram as maiores taxas de redução metabólica nas duas cepas (± 79%); os grupos QX-P apresentaram taxas de redução similares em ambas as cepas, porém com percentual um pouco maior para E. coli (60- 80%) e os grupos QX-C tiveram grande discrepância entre as duas cepas: de 35 a 70% para S. aureus e 14 a 19% para E. coli. Pode-se concluir que, frente as análises feitas, o comportamento do material foi afetado diretamente pelos ativos adicionados a matriz polimérica. As proporções de Q ou X afetaram somente a espessura final. Quanto a aplicação proposta de drug delivery, os dispositivos apresentaram grande potencial, principalmente os grupos CLX e QX-P. (AU)


The effectiveness of osseointegrated implants is widely recognized in scientific literature. However, bacterial infiltrations at the implant-abutment interface may trigger inflammation in surrounding tissues, contributing to the development of more serious conditions, such as peri-implantitis. The aim of this study was to produce chitosan (Q) and xanthan (X) polyelectrolyte complexes (PECs) in the form of membranes, load and evaluate them for enzymatic degradation, release kinetics, and antimicrobial actions for drug delivery applications. QX membranes at 1% (w/v) were produced in three proportions, totaling twelve experimental groups: QX (1:1), QX (1:2), QX (2:1), QX-P (with propolis) (1:1), QX-P (1:2), QX-P (2:1), QX-C (with cinnamon) (1:1), QX-C (1:2), QX-C (2:1), and CLX (with 0.2% chlorhexidine) (1:1), CLX (1:2), CLX (2:1). Characterization studies included analyses of dry state thickness, surface and crosssectional morphology using Scanning Electron Microscopy (SEM), structural analysis by Fourier Transform Infrared (FTIR) spectroscopy, mass loss degradation analysis under lysozyme action, and active release kinetics analysis in artificial saliva. Microbiological tests included verification analyses of inhibition halos and antibiofilm action against strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results showed that membrane thickness varied according to proportion, with group QX (1:2) presenting the highest average of 1.022 mm ± 0.2, followed by QX (1:1) with 0.641 mm ± 0.1, and QX (2:1) with 0.249 mm ± 0.1. SEM images showed greater presence of fibers, roughness, and porosity in groups QX (1:2) and QX (1:1) respectively, while QX (2:1) exhibited a smoother, more uniform, and thinner surface. FTIR confirmed characteristic peaks of the materials individually, besides showing ionic bonds formed for PECs. Degradation analysis revealed that groups with added natural actives had better survival rates than QX groups. In release tests, QX-P groups exhibited slower kinetics than QX-C, with 100% cumulative release achieved in 24 h. inhibitory halo tests, only CLX groups exhibited action against both strains, while QX-P acted against S. aureus. Antibiofilm analyses showed CLX groups with the highest metabolic reduction rates in both strains (± 79%); QX-P groups showed similar reduction rates in both strains, slightly higher for E. coli (60-80%), and QX-C groups had a significant discrepancy between strains: 35-70% for S. aureus and 14-19% for E. coli. In conclusion, material behavior was directly affected by added actives to the polymeric matrix. Proportions of Q or X only affected final thickness. Regarding proposed drug delivery applications, the devices showed great potential, especially CLX and QX-P groups.(AU)


Assuntos
Sistemas de Liberação de Medicamentos , Quitosana , Projeto do Implante Dentário-Pivô , Compostos Fitoquímicos , Polieletrólitos
2.
Chinese Journal of Biotechnology ; (12): 1390-1402, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981145

RESUMO

Polymer nanoparticles generally refer to hydrophobic polymers-based nanoparticles, which have been extensively studied in the nanomedicine field due to their good biocompatibility, efficient long-circulation characteristics, and superior metabolic discharge patterns over other nanoparticles. Existing studies have proved that polymer nanoparticles possess unique advantages in the diagnosis and treatment of cardiovascular diseases, and have been transformed from basic researches to clinical applications, especially in the diagnosis and treatment of atherosclerosis (AS). However, the inflammatory reaction induced by polymer nanoparticles would induce the formation of foam cells and autophagy of macrophages. In addition, the variations in the mechanical microenvironment of cardiovascular diseases may cause the enrichment of polymer nanoparticles. These could possibly promote the occurrence and development of AS. Herein, this review summarized the recent application of polymer nanoparticles in the diagnosis and treatment of AS, as well as the relationship between polymer nanoparticles and AS and the associated mechanism, with the aim to facilitate the development of novel nanodrugs for the treatment of AS.


Assuntos
Humanos , Polímeros/química , Doenças Cardiovasculares , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Aterosclerose/patologia
3.
China Journal of Chinese Materia Medica ; (24): 13-21, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970496

RESUMO

Rheumatoid arthritis(RA) is a chronic degenerative joint disease characterized by inflammation. Due to the complex causes, no specific therapy is available. Non-steroidal anti-inflammatory agents and corticosteroids are often used(long-term, oral/injection) to interfere with related pathways for reducing inflammatory response and delaying the progression of RA, which, however, induce many side effects. Microneedle, an emerging transdermal drug delivery system, is painless and less invasive and improves drug permeability. Thus, it is widely used in the treatment of RA and is expected to be a new strategy in clinical treatment. This paper summarized the application of microneedles in the treatment of RA, providing a reference for the development of new microneedles and the expansion of its clinical application.


Assuntos
Humanos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Preparações Farmacêuticas , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Agulhas
4.
Chinese Journal of Biotechnology ; (12): 177-191, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970367

RESUMO

Self-assembly refers to the spontaneous process where basic units such as molecules and nanostructured materials form a stable and compact structure. Peptides can self-assemble by non-covalent driving forces to form various morphologies such as nanofibers, nano layered structures, and micelles. Peptide self-assembly technology has become a hot research topic in recent years due to the advantages of definite amino acid sequences, easy synthesis and design of peptides. It has been shown that the self-assembly design of certain peptide drugs or the use of self-assembled peptide materials as carriers for drug delivery can solve the problems such as short half-life, poor water solubility and poor penetration due to physiological barrier. This review summarizes the formation mechanism of self-assembled peptides, self-assembly morphology, influencing factors, self-assembly design methods and major applications in biomedical field, providing a reference for the efficient use of peptides.


Assuntos
Preparações Farmacêuticas , Peptídeos/química , Sequência de Aminoácidos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos
5.
Chinese Journal of Biotechnology ; (12): 159-176, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970366

RESUMO

Erythrocytes-camouflaged nanoparticles is an in vivo delivery system that uses erythrocytes or erythrocyte membrane nano vesicles as carriers for drugs, enzymes, peptides and antigens. This system has the advantages of good biocompatibility, long circulation cycle and efficient targeting. This review summarizes the type of carriers, their development history, the application of delivery strategies as well as their limitations and future challenges. Lastly, future directions and key issues in the development of this system are discussed.


Assuntos
Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Vacinas , Eritrócitos , Nanopartículas
6.
Journal of Zhejiang University. Medical sciences ; (6): 328-337, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982050

RESUMO

Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.


Assuntos
Administração Intranasal , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Portadores de Fármacos , Encéfalo , Cavidade Nasal/fisiologia , Mucosa Nasal
7.
Journal of Zhejiang University. Medical sciences ; (6): 318-327, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982049

RESUMO

Currently, the first-line drugs for invasive fungal infections (IFI), such as amphotericin B, fluconazole and itraconazole, have drawbacks including poor water solubility, low bioavailability, and severe side effects. Using drug delivery systems is a promising strategy to improve the efficacy and safety of traditional antifungal therapy. Synthetic and biomimetic carriers have greatly facilitated the development of targeted delivery systems for antifungal drugs. Synthetic carrier drug delivery systems, such as liposomes, nanoparticles, polymer micelles, and microspheres, can improve the physicochemical properties of antifungal drugs, prolong their circulation time, enhance targeting capabilities, and reduce toxic side effects. Cell membrane biomimetic drug delivery systems, such as macrophage or red blood cell membrane-coated drug delivery systems, retain the membrane structure of somatic cells and confer various biological functions and specific targeting abilities to the loaded antifungal drugs, exhibiting better biocompatibility and lower toxicity. This article reviews the development of antifungal drug delivery systems and their application in the treatment of IFI, and also discusses the prospects of novel biomimetic carriers in antifungal drug delivery.


Assuntos
Antifúngicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Anfotericina B/uso terapêutico , Lipossomos/química , Nanopartículas , Portadores de Fármacos
8.
Journal of Zhejiang University. Medical sciences ; (6): 279-284, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982045

RESUMO

Nucleoside drugs play an essential role in treating major diseases such as tumor and viral infections, and have been widely applied in clinics. However, the effectiveness and application of nucleoside drugs are significantly limited by their intrinsic properties such as low bioavailability, lack of targeting ability, and inability to enter the cells. Nanocarriers can improve the physiological properties of nucleoside drugs by improving drug delivery efficiency and availability, maintaining drug efficacy and system stability, adjusting the binding ability of the carrier and drug molecules, as well as modifying specific molecules to achieve active targeting. Starting from the design strategy of nucleoside drug nanodelivery systems, the design and therapeutic effect of these nanomedicines are described in this review, and the future development directions of nucleoside/nucleotide-loaded nanomedicines are also discussed.


Assuntos
Nanomedicina , Nucleosídeos/química , Nucleotídeos , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos
9.
Journal of Zhejiang University. Medical sciences ; (6): 259-266, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982043

RESUMO

The application of intraocular drug delivery is usually limited due to special anatomical and physiological barriers, and the elimination mechanisms in the eye. Organic nano-drug delivery carriers exhibit excellent adhesion, permeability, targeted modification and controlled release abilities to overcome the obstacles and improve the efficiency of drug delivery and bioavailability. Solid lipid nanoparticles can entrap the active components in the lipid structure to improve the stability of drugs and reduce the production cost. Liposomes can transport hydrophobic or hydrophilic molecules, including small molecules, proteins and nucleic acids. Compared with linear macromolecules, dendrimers have a regular structure and well-defined molecular mass and size, which can precisely control the molecular shape and functional groups. Degradable polymer materials endow nano-delivery systems a variety of size, potential, morphology and other characteristics, which enable controlled release of drugs and are easy to modify with a variety of ligands and functional molecules. Organic biomimetic nanocarriers are highly optimized through evolution of natural particles, showing better biocompatibility and lower toxicity. In this article, we summarize the advantages of organic nanocarriers in overcoming multiple barriers and improving the bioavailability of drugs, and highlight the latest research progresses on the application of organic nanocarriers for treatment of ocular diseases.


Assuntos
Portadores de Fármacos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Nanopartículas/química
11.
Journal of Zhejiang University. Medical sciences ; (6): 417-428, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1009904

RESUMO

Nucleic acid-based drugs, such as RNA and DNA drugs, exert their effects at the genetic level. Currently, widely utilized nucleic acid-based drugs include nucleic acid aptamers, antisense oligonucleotides, mRNA, miRNA, siRNA and saRNA. However, these drugs frequently encounter challenges during clinical application, such as poor stability, weak targeting specificity, and difficulties in traversing physiological barriers. By employing chemical modifications of nucleic acid structures, it is possible to enhance the stability and targeting specificity of certain nucleic acid drugs within the body, thereby improving delivery efficiency and reducing immunogenicity. Moreover, utilizing nucleic acid drug carriers can facilitate the transportation of drugs to lesion sites, thereby aiding efficient intracellular escape and promoting drug efficacy within the body. Currently, commonly employed delivery carriers include virus vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers and extracellular vesicles. Nevertheless, individual modifications or delivery carriers alone are insufficient to overcome numerous obstacles. The integration of nucleic acid chemical modifications with drug delivery systems holds promise for achieving enhanced therapeutic effects. However, this approach also presents increased technical complexity and clinical translation costs. Therefore, the development of nucleic acid drug carriers and nucleic acid chemical modifications that are both practical and simple, while maintaining high efficacy, low toxicity, and precise nucleic acid delivery, has become a prominent research focus in the field of nucleic acid drug development. This review comprehensively summarizes the advancements in nucleic acid-based drug modifica-tions and delivery systems. Additionally, strategies to enhance nucleic acid drug delivery efficiency are discussed, with the aim of providing valuable insights for the translational application of nucleic acid drugs.


Assuntos
Ácidos Nucleicos , RNA Interferente Pequeno/genética , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos
12.
Journal of Biomedical Engineering ; (6): 792-798, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008901

RESUMO

Sodium alginate (SA) is a kind of natural polymer material extracted from kelp, which has excellent biocompatibility, non-toxicity, biodegradability and abundant storage capacity. The formation condition of sodium alginate gel is mild, effectively avoiding the inactivation of active substances. After a variety of preparation methods, sodium alginate microspheres are widely used in the fields of biomaterials and tissue engineering. This paper reviewed the common methods of preparing alginate microspheres, including extrusion, emulsification, electrostatic spraying, spray drying and coaxial airflow, and discussed their applications in biomedical fields such as bone repair, hemostasis and drug delivery.


Assuntos
Alginatos , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Microesferas , Procedimentos de Cirurgia Plástica
13.
China Journal of Chinese Materia Medica ; (24): 4874-4883, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008657

RESUMO

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Assuntos
Humanos , Qualidade de Vida , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Nanotecnologia
14.
Journal of Biomedical Engineering ; (6): 633-638, 2022.
Artigo em Chinês | WPRIM | ID: wpr-939632

RESUMO

Liposome is an ideal drug carrier with many advantages such as excellent biocompatibility, non-immunogenicity, and easy functionalization, and has been used for the clinical treatment of many diseases including tumors. For the treatment of tumors, liposome has some passive targeting capability, but the passive targeting effect alone is very limited in improving the drug enrichment in tumor tissues, and active targeting is an effective strategy to improve the drug enrichment. Therefore, active targeting liposome drug-carriers have been extensively studied for decades. In this paper, we review the research progresses on active targeting liposome drug-carriers based on the specific binding of the carriers to the surface of tumor cells, and summarize the opportunities, challenges and future prospects in this field.


Assuntos
Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Chinese Journal of Biotechnology ; (12): 650-665, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927734

RESUMO

Based on the self-assembly process occurring in the human body all the time, self-assembled nanomaterials were designed by the researchers. The self-assembled nanomaterials have controllability, biocompatibility and functional advantages in vivo. The self-assembled nanomaterials constructed in situ under a physiological environment display various biological characteristics which can be used for imaging, therapy, and broad clinical applications. In situ self-assembled nanomaterials can boost drug function, reduce toxic and side effects, prolong imaging time and enlarge signal-to-noise ratio. By using pathological conditions to trigger specific responses in vivo, well-ordered nanoaggregates can be spontaneously formed by multiple weak bonding interactions. The assembly shows higher accumulation and longer retention in situ. Endogenous triggers for in situ assembly, such as enzymes, pH, reactive oxygen species and ligand receptor interaction, can be used to transform the materials into a variety of controllable nanostructures including nanoparticles, nanofibers and gels through bioactivated in vivo assembly (BIVA) strategies. BIVA strategies can be applied for treatment, imaging or participate in the physiological activities of cells at the lesion site. This review summarized and prospected the design of self-assembled peptide materials based on BIVA technology and their biomedical applications. The nanostructures of the self-assembly enable some beneficial biological effects, such as assembly induced retention (AIR) effect, enhanced targeting effect, multivalent bond effect, and membrane disturbance. Thus, the BIVA nanotechnology is promising for efficient drug delivery, enhancement of targeting and treatment, as well as optimization of the biological distribution of drugs.


Assuntos
Humanos , Sistemas de Liberação de Medicamentos , Nanofibras/química , Nanopartículas , Nanoestruturas/química , Peptídeos
16.
Acta Physiologica Sinica ; (6): 67-72, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927582

RESUMO

Extracellular vesicles (EVs) are lipid bilayer-enclosed structures containing diverse bioactive cargoes that play a major role in intercellular communication in both physiological and pathological conditions. Currently, the field of EV-based therapy has been rapidly growing, and two main therapeutic uses of EVs can be surmised: (i) exploiting stem cell-derived EVs as therapeutic agents; and (ii) employing EVs as natural therapeutic vectors for drug delivery. This review will discuss the recent advances in EV-based therapy in the treatment of renal disease.


Assuntos
Humanos , Comunicação Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Nefropatias/terapia
17.
Protein & Cell ; (12): 281-301, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929175

RESUMO

A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or off-target effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to explore the protein targets of chemical compounds from the perspective of cell transcriptomics and RNA biology. Here, we propose a novel Siamese spectral-based graph convolutional network (SSGCN) model for inferring the protein targets of chemical compounds from gene transcriptional profiles. Although the gene signature of a compound perturbation only provides indirect clues of the interacting targets, and the biological networks under different experiment conditions further complicate the situation, the SSGCN model was successfully trained to learn from known compound-target pairs by uncovering the hidden correlations between compound perturbation profiles and gene knockdown profiles. On a benchmark set and a large time-split validation dataset, the model achieved higher target inference accuracy as compared to previous methods such as Connectivity Map. Further experimental validations of prediction results highlight the practical usefulness of SSGCN in either inferring the interacting targets of compound, or reversely, in finding novel inhibitors of a given target of interest.


Assuntos
Sistemas de Liberação de Medicamentos , Proteínas , Transcriptoma
18.
Braz. J. Pharm. Sci. (Online) ; 58: e191133, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394030

RESUMO

Abstract The study is aimed at investigating the functional physicochemical and solid state characteristics of food-grade Tetracarpidium conophorum (T. conophorum) oil for possible application in the pharmaceutical industry for drug delivery. The oil was obtained by cold hexane extraction and its physicochemical properties including viscosity, pH, peroxide, acid, and thiobarbituric acid values, nutrient content, and fatty acid profile were determined. Admixtures of the oil with Softisan®154, a hydrogenated solid lipid from palm oil, were prepared to obtain matrices which were evaluated by differential scanning calorimetry, fourier-transform infrared spectroscopy, and x-ray diffractometry. Data from the study showed that T. conophorum oil had Newtonian flow behaviour, acidic pH, insignificant presence of hyperperoxides and malondialdehyde, contains minerals including calcium, magnesium, zinc, copper, manganese, iron, selenium, and potassium, vitamins including niacin (B3), thiamine (B1), cyanocobalamine (B12), ascorbic acid (C), and tocopherol (E), and long-chain saturated and unsaturated fatty acids including n-hexadecanoic acid, 9(Z)-octadecenoic acid, and cis-13-octadecenoic acid. The lipid matrices had low crystallinity and enthalpy values with increased amorphicity, and showed no destructive intermolecular interaction or incompatibility between T. conophorum oil and Softisan® 154. In conclusion, the results have shown that, in addition to T. conophorum oil being useful as food, it will also be an important excipient for the development of novel, safe, and effective lipid-based drug delivery systems.


Assuntos
Óleos/análise , Preparações Farmacêuticas/administração & dosagem , Físico-Química/instrumentação , Euphorbiaceae/classificação , Análise Espectral/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Alimentos/classificação
19.
Braz. J. Pharm. Sci. (Online) ; 58: e19803, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394043

RESUMO

Abstract The current investigation entail systematic Quality by Design (QbD)-enabled approach for the development of Sustained released embedded drug delivery systems of L-Arginine employing ionic gelation technique to attain improved patient compliance. Hence, in this QbD enabled systematic approach; quality target product profile (QTTP) was defined and critical quality attributes (CQAs) were identified. Further the risk assessment studies were undertaken through Ishikawa fish bone diagram to locate the critical material attributes (CMAs) and/or critical process parameters (CPPs) for the formulation of beads that may affect CQAs of drug product. A face centered central composite design (CCD) for two factors at three levels each with α =1 was employed for the optimization process to checkout the impact of concentration of sodium alginate and concentration of chitosan as CMAs which wereprior identified from risk assessment study and further evaluated for CQAs viz. bead size, swelling index and percent drug entrapment. The optimum formulation was embarked upon by using mathematical model being developed yielding desired CQAs. Thereby chitosan coated calcium-alginate delivery system was successfully developed by strategically employing QbD approach.In a nutshell, the presentinvestigation reports the successful development of optimized chitosan coated alginate beads employing QbD approach which can serve as a platform for other drugs too.


Assuntos
Cooperação do Paciente , Sistemas de Liberação de Medicamentos , Medição de Risco/métodos , Quitosana , Métodos , Preparações Farmacêuticas , Cálcio/efeitos adversos , Sistemas de Liberação de Medicamentos , Gestão da Qualidade Total , Alginatos/efeitos adversos , Modelos Teóricos
20.
Braz. J. Pharm. Sci. (Online) ; 58: e20074, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403714

RESUMO

Abstract Morinda lucida leaves are largely used by Congolese traditional healers for the treatment of uncomplicated malaria. The antimalarial activity of their ethanolic extract has been confirmed both in vitro and in vivo. However, the development of relevant formulations for potential clinical application is hampered since the active ingredients contained in this extract exhibit poor water solubility and low oral bioavailability. Hence, this work aims not only to develop self-nanoemulsifying drug delivery systems (SNEDDSs) for oral delivery of the ethanolic extract of Morinda lucida (ML) but also to evaluate its oral antimalarial activity alone and in combination with other Congolese ethanolic plant extracts (Alstonia congensis, Garcinia kola, Lantana camara, Morinda morindoides or Newbouldia laevis). Based on the solubility of these different extracts in various excipients, SNEDDS preconcentrates were prepared, and 200 mg/g of each plant extract were suspended in these formulations. The 4-day suppressive Peter's test revealed a significant parasite growth inhibiting effect for all the extract-based SNEDDS (from 55.0 to 82.4 %) at 200 mg/kg. These activities were higher than those of their corresponding ethanolic suspensions given orally at the same dose (p<0.05). The combination therapy of MLSNEDDS with other extract-based SNEDDS exhibited remarkable chemosuppression, ranging from 74.3 % to 95.8 % (for 100 + 100 mg/kg) and 86.7 % to 95.5 % (for 200 + 200 mg/kg/day). In regard to these findings, SNEDDS suspension may constitute a promising approach for oral delivery of ML alone or in combination with other antimalarial plants.


Assuntos
Plantas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Extratos Vegetais/administração & dosagem , Morinda/efeitos adversos , Antimaláricos/análise , Técnicas In Vitro/métodos , Sistemas de Liberação de Medicamentos , Dosagem , Malária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA