Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Vitae (Medellín) ; 31(1): 1-7, 2024-05-03. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1538070

RESUMO

Background: Moringa peregrina is widely used in the traditional medicine of the Arabian Peninsula to treat various ailments, because it has many pharmacologically active components with several therapeutic effects. Objective: This study aimed to investigate the inhibitory effect of Moringaperegrina seed ethanolic extract (MPSE) against key enzymes involved in human pathologies, such as angiogenesis (thymidine phosphorylase), diabetes (α-glucosidase), and idiopathic intracranial hypertension (carbonic anhydrase). In addition, the anticancer properties were tested against the SH-SY5Y (human neuroblastoma). Results: MPSE extract significantly inhibited α-glucosidase, thymidine phosphorylase, and carbonic anhydrase with half-maximal inhibitory concentrations (IC50) values of 303.1 ± 1.3, 471.30 ± 0.3, and 271.30 ± 5.1 µg/mL, respectively. Furthermore, the antiproliferative effect of the MPSE was observed on the SH-SY5Y cancer cell line with IC50 values of 55.1 µg/mL. Conclusions: MPSE has interesting inhibitory capacities against key enzymes and human neuroblastoma cancer cell line.


Antecedentes: La Moringa peregrina se utiliza ampliamente en la medicina tradicional de la Península Arábiga para tratar diversas dolencias, ya que posee numerosos componentes farmacológicamente activos con varios efectos terapéuticos. Objetivo: Este estudio tenía como objetivo investigar el efecto inhibidor del extracto etanólico de semillas de Moringaperegrina (MPSE) frente a enzimas clave implicadas en patologías humanas, como la angiogénesis (timidina fosforilasa), la diabetes (α-glucosidasa) y la hipertensión intracraneal idiopática (anhidrasa carbónica). Además, se comprobaron las propiedades anticancerígenas frente al SH-SY5Y (neuroblastoma humano). Resultados: El extracto de MPSE inhibió significativamente la α-glucosidasa, la timidina fosforilasa y la anhidrasa carbónica con concentraciones inhibitorias semimáximas (IC50) de 303,1 ± 1,3, 471,30 ± 0,3 y 271,30 ± 5,1 µg/mL, respectivamente. Además, se observó el efecto antiproliferativo del MPSE en la línea celular del cáncer SH-SY5Y con valores de IC50 de 55,1 µg/mL. Conclusiones: MPSE posee interesantes capacidades inhibitorias frente a enzimas clave y línea celular de neuroblastoma canceroso humano.


Assuntos
Humanos , Anticarcinógenos , Moringa , Inibidores Enzimáticos , alfa-Glucosidases
2.
Acta neurol. colomb ; 39(2)jun. 2023.
Artigo em Espanhol | LILACS | ID: biblio-1533488

RESUMO

Introducción: La enfermedad de Pompe es un trastorno de origen genético causado por la deficiencia de la enzima alfa-glucosidasa ácida, que se caracteriza por el acumulo anormal de glucógeno en los músculos y otros tejidos, generando una debilidad muscular progresiva, la cual debe ser diagnosticada y tratada de forma oportuna, ya que de esto dependerá el pronóstico, la sobrevida y la funcionalidad de los pacientes con esta condición. Contenidos: El abordaje multidisciplinario incluye tanto una adecuada valoración y soporte nutricional como el inicio del tratamiento modificador de enfermedad a través de la terapia de reemplazo enzimático, que a su vez dependerá de la forma de presentación, la variante genética, el perfil inicial del paciente, las condiciones especiales que puedan existir y las metas propias para cada paciente. Para garantizar un manejo adecuado, se deben realizar estudios de seguimiento con parámetros objetivos, evaluar posibles eventos secundarios e instaurar su manejo en caso de presentarlos. Conclusiones: El pronóstico de esta enfermedad dependerá del inicio oportuno del tratamiento, la implementación de pautas nutricionales adecuadas y el establecimiento del seguimiento de los parámetros clínicos y paraclínicos para cada uno de los pacientes.


Introduction: Pompe disease is a disorder of genetic origin caused by the deficiency of the acid alpha-glucosidase enzyme, which is characterized by the abnormal accumulation of glycogen in the muscles and other tissues, generating progressive muscle weakness, which must be diagnosed and treated in a timely manner, since the prognosis, survival, and functionality of patients with this condition will depend on this. Contents: The multidisciplinary approach includes both an adequate evaluation and nutritional support as well as the initiation of disease-modifying treatment through enzyme replacement therapy, which in turn will depend on the form of presentation, the genetic variant, the initial profile of the patient, the special conditions that may exist and the specific goals for each patient. To guarantee adequate management, follow-up studies must be carried out with objective parameters, evaluate possible secondary events and establish their management in case of presenting them. Conclusions: The prognosis of this disease will depend on the timely initiation of treatment, the implementation of adequate nutritional guidelines and the establishment of monitoring of clinical and paraclinical parameters for each of the patients.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Dieta , alfa-Glucosidases , Ciências da Nutrição , Terapia de Reposição de Enzimas
3.
Artigo em Chinês | WPRIM | ID: wpr-1008635

RESUMO

The chemical constituents of the seeds of Moringa oleifera were isolated and purified by using Sephadex LH-20, Toyo-pearl HW-40F, silica gel, ODS, and MCI column chromatography. The structures of compounds were identified by high-resolution mass spectrometry, ~1H-NMR, ~(13)C-NMR, HMQC, HMBC, and ~1H-~1H COSY, as well as physicochemical properties of compounds and literature data. Twelve compounds were isolated from 30% ethanol fraction of the seeds of M. oleifera and identified as ethyl-4-O-α-L-rhamnosyl-α-L-rhamnoside(1), ethyl-3-O-α-L-rhamnosyl-α-L-rhamnoside(2),(4-hydroxybenzyl)ethyl carbamate(3),(4-aminophenyl)acetic acid(4), ethyl-α-L-rhamnoside(5), methyl-α-L-rhamnoside(6), moringapyranosyl(7), 2-[4-(α-L-rhamnosyl)phenyl]methyl acetate(8), niaziridin(9), 5-hydroxymethyl furfural(10), 4-hydroxybenzeneacetamide(11), and 4-hydroxybenzoic acid(12). Among them, compounds 1 and 2 are two new compounds, compound 3 is a new natural product, and compounds 4-5 were yielded from Moringa plant for the first time. All compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compound 10 showed excellent inhibitory activity with IC_(50) of 210 μg·mL~(-1).


Assuntos
Moringa oleifera/química , alfa-Glucosidases , Moringa , Sementes , Extratos Vegetais/farmacologia
4.
Artigo em Chinês | WPRIM | ID: wpr-1008865

RESUMO

Nine compounds were isolated from the 90% ethanol extract of Salacia polysperma by silica gel, Sephadex LH-20 column chromatography, together with preparative HPLC methods. Based on HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the nine compounds were identified as 28-hydroxy wilforlide B(1), wilforlide A(2), 1β,3β-dihydroxyurs-9(11),12-diene(3),(-)-epicatechin(4),(+)-catechin(5),(-)-4'-O-methyl-ent-galloepicatechin(6), 3-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)propan-1-one(7),(-)-(7S,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7,9-diol-7'-aldehyde(8), and vanillic acid(9). Compound 1 is a new oleanane-type triterpene lactone. Compounds 1, 3, 4, 7-9 were isolated from the Salacia genus for the first time. All compounds were assayed for their α-glucosidase inhibitory activity. The results suggested that compound 8 exhibited moderate α-glucosidase inhibitory activity, with an IC_(50) value of 37.2 μmol·L~(-1), and the other compounds showed no α-glucosidase inhibitory activity.


Assuntos
Salacia/química , alfa-Glucosidases , Triterpenos/farmacologia , Espectroscopia de Ressonância Magnética , Etanol , Estrutura Molecular
5.
Artigo em Chinês | WPRIM | ID: wpr-981813

RESUMO

OBJECTIVE@#To explore the clinical features, lysosomal enzymatic [acid α-glucosidase (GAA)] activities and genetic variants in a child with late-onset Pompe disease (LOPD).@*METHODS@#Clinical data of a child who had presented at the Genetic Counseling Clinic of West China Second University Hospital in August 2020 was retrospectively analyzed. Blood samples were collected from the patient and her parents for the isolation of leukocytes and lymphocytes as well as DNA extraction. The activity of lysosomal enzyme GAA in leukocytes and lymphocytes was analyzed with or without addition of inhibitor of GAA isozyme. Potential variants in genes associated with neuromuscular disorders were analyzed, in addition with conservation of the variant sites and protein structure. The remaining samples from 20 individuals undergoing peripheral blood lymphocyte chromosomal karyotyping were mixed and used as the normal reference for the enzymatic activities.@*RESULTS@#The child, a 9-year-old female, had featured delayed language and motor development from 2 years and 11 months. Physical examination revealed unstable walking, difficulty in going upstairs and obvious scoliosis. Her serum creatine kinase was significantly increased, along with abnormal electromyography, whilst no abnormality was found by cardiac ultrasound. Genetic testing revealed that she has harbored compound heterozygous variants of the GAA gene, namely c.1996dupG (p.A666Gfs*71) (maternal) and c.701C>T (p.T234M) (paternal). Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1996dupG (p.A666Gfs*71) was rated as pathogenic (PVS1+PM2_Supporting+PM3), whilst the c.701C>T (p.T234M) was rated as likely pathogenic (PM1+PM2_Supporting+PM3+PM5+PP3). The GAA in the leukocytes from the patient, her father and mother were respectively 76.1%, 91.3% and 95.6% of the normal value without the inhibitor, and 70.8%, 112.9% and 128.2% of the normal value with the inhibitor, whilst the activity of GAA in their leukocytes had decreased by 6 ~ 9 times after adding the inhibitor. GAA in lymphocytes of the patient, her father and mother were 68.3%, 59.0% and 59.5% of the normal value without the inhibitor, and 41.0%, 89.5% and 57.7% of the normal value with the inhibitor, the activity of GAA in lymphocytes has decreased by 2 ~ 5 times after adding the inhibitor.@*CONCLUSION@#The child was diagnosed with LOPD due to the c.1996dupG and c.701C>T compound heterozygous variants of the GAA gene. The residual activity of GAA among LOPD patients can range widely and the changes may be atypical. The diagnosis of LOPD should not be based solely on the results of enzymatic activity but combined clinical manifestation, genetic testing and measurement of enzymatic activity.


Assuntos
Humanos , Criança , Masculino , Feminino , Doença de Depósito de Glicogênio Tipo II/patologia , Estudos Retrospectivos , alfa-Glucosidases/genética , Mães , Lisossomos/patologia , Mutação
6.
Artigo em Chinês | WPRIM | ID: wpr-981973

RESUMO

Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.


Assuntos
Humanos , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , alfa-Glucosidases , Qualidade de Vida , Terapia de Reposição de Enzimas
7.
Artigo em Inglês | WPRIM | ID: wpr-982715

RESUMO

This study employed the α-glucosidase inhibitory activity model as an anti-diabetic assay and implemented a bioactivity-guided isolation strategy to identify novel natural compounds with potential therapeutic properties. Hypericum sampsoniiwas investigated, leading to the isolation of two highly modified seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2), eight phenolic derivatives (3-10), and four terpene derivatives (11-14). The structures of compounds 1 and 2, featuring an unprecedented octahydro-2H-chromen-2-one ring system, were fully characterized using extensive spectroscopic data and quantum chemistry calculations. Six compounds (1, 5-7, 9, and 14) exhibited potential inhibitory effects against α-glucosidase, with IC50 values ranging from 0.050 ± 0.0016 to 366.70 ± 11.08 μg·mL-1. Notably, compound 5 (0.050 ± 0.0016 μg·mL-1) was identified as the most potential α-glucosidase inhibitor, with an inhibitory effect about 6900 times stronger than the positive control, acarbose (IC50 = 346.63 ± 15.65 μg·mL-1). A docking study was conducted to predict molecular interactions between two compounds (1 and 5) and α-glucosidase, and the hypothetical biosynthetic pathways of the two unprecedented seco-PPAPs were proposed.


Assuntos
Estrutura Molecular , Hypericum/química , alfa-Glucosidases , Espectroscopia de Ressonância Magnética , Inibidores de Glicosídeo Hidrolases/farmacologia
8.
Braz. J. Pharm. Sci. (Online) ; 59: e19544, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1429970

RESUMO

Abstract A new series of N-Mannich bases of 2-Phenyl-5-benzimidazole sulfonic acid have been synthesized through amino methylation reaction with secondary amines. The two moieties were held together through a methylene bridge, which comes from formaldehyde (Formalin Solution 37%) used in the reaction. Chemical structures of the newly synthesized compounds have been confirmed using FT-IR, 1HNMR and 13CNMR. Different in vitro assays including Anti-oxidant, Enzyme inhibition, Anti-microbial and Cytotoxicity assay were performed to evaluate the biological potential with reference to the standard drug. Among the synthesized library, compound 3a shows maximum alpha-glucosidase inhibition with an IC50 value of 66.66 µg/ml, compound 3d was found most toxic with LC50 value of 10.17 µg/ml. ADME evaluation studies were performed with the help of Molinspiration online software. Docking calculations were also performed. Given the importance of the nucleus involved, the synthesized compound might find extensive medicinal applications as reported in the literature.


Assuntos
Benzimidazóis/agonistas , Bases de Mannich/análise , Antioxidantes/farmacologia , Ácidos Sulfônicos/efeitos adversos , Preparações Farmacêuticas/administração & dosagem , alfa-Glucosidases/efeitos adversos , Simulação de Acoplamento Molecular/instrumentação , Metilação
9.
Braz. j. biol ; 83: 00264, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339364

RESUMO

Abstract Allium cepa L. is a commonly consumed vegetable that belongs to the Amaryllidaceae family and contains nutrients and antioxidants in ample amounts. In spite of the valuable food applications of onion bulb, its peel and outer fleshy layers are generally regarded as waste and exploration of their nutritional and therapeutic potential is still in progress with a very slow progression rate. The present study was designed with the purpose of doing a comparative analysis of the antioxidant potential of two parts of Allium cepa, i.g., bulb (edible part) and outer fleshy layers and dry peels (inedible part). Moreover, the inhibitory effect of the onion bulb and peel extracts on rat intestinal α-glucosidase and pancreatic α-amylase of porcine was also evaluated. The antioxidant potential of onion peel and bulb extracts were evaluated using 2,2-diphenyl- 1-picryl hydrazyl (DPPH), ferric-reducing antioxidant power assay (FRAP), 2,2'-azino-bis- 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay, H2O2 radical scavenging activity and Fe2+ chelating activity. Total flavonoids and phenolic content of ethanolic extract of onion peel were significantly greater as compared to that of onion bulb. Ethanolic extract of onion peel also presented better antioxidant and free-radical scavenging activity as compared to the ethanolic extract of bulb, while the aqueous extract of bulb presented weakest antioxidative potential. Onion peel extract's α-glucosidase inhibition potential was also correlated with their phenolic and flavonoid contents. The current findings presented onion peel as a possible source of antioxidative agents and phenolic compounds that might be beneficial against development of various common chronic diseases that might have an association with oxidative stress. Besides, outer dry layers and fleshy peels of onion exhibited higher phenolic content and antioxidant activities, compared to the inner bulb. The information obtained by the present study can be useful in promoting the use of vegetable parts other than the edible mesocarp for several future food applications, rather than these being wasted.


Resumo Allium cepa pertence à família Liliaceae e é rica em nutrientes e antioxidantes. Apesar das expressivas aplicações alimentares do bulbo da cebola, sua casca e outras camadas externas são geralmente consideradas resíduos, e seu potencial nutricional e terapêutico ainda é pouco explorado. O presente estudo foi delineado com o objetivo de investigar comparativamente o potencial antioxidante de duas partes de Allium cepa, por exemplo o bulbo (parte comestível) e camadas externas e cascas secas (parte não comestível). Além disso, o efeito inibitório dos extratos do bulbo de cebola e casca sobre a α-glucosidase intestinal de ratos e α-amilase pancreática suína também foi avaliado. O potencial antioxidante dos extratos da casca de cebola e bulbo foi avaliado utilizando-se 2,2-difenil-1-picrilhidrazil (DPPH), método de poder antioxidante de redução do ferro (FRAP), método 2,2'-azino-bis-3-etilbenzotiazolina-6-ácido sulfônico (ABTS) de eliminação de radicais, atividade de eliminação de radicais H2O2 e atividade quelante do Fe2+. Os flavonoides totais e os teores fenólicos do extrato de etanol da casca de cebola foram significativamente maiores quando comparados ao do bulbo. O extrato de etanol da casca de cebola também apresentou melhor atividade antioxidante e eliminação de radicais livres quando comparado ao extrato de etanol do bulbo, enquanto o extrato aquoso de bulbo apresentou menor potencial antioxidante. O potencial de inibição da α-glicosidase dos extratos de casca de cebola correlacionou-se com seus teores fenólicos e de flavonoides. Os resultados encontrados identificaram que a casca de cebola é uma possível fonte de agentes antioxidantes e compostos fenólicos que podem ser benéficos contra o desenvolvimento de várias doenças crônicas que estão associadas ao estresse oxidativo. Além disso, as camadas externas secas e as cascas da cebola exibiram maior conteúdo fenólico e atividades antioxidantes, em comparação com o bulbo interno. As informações obtidas pelo presente estudo podem promover o uso de outras partes vegetais além do mesocarpo comestível para futuras aplicações em alimentos, ao invés de serem desperdiçadas.


Assuntos
Animais , Ratos , Cebolas , Antioxidantes , Suínos , Extratos Vegetais/farmacologia , alfa-Glucosidases , Peróxido de Hidrogênio
10.
Artigo em Inglês | WPRIM | ID: wpr-977616

RESUMO

Aims@#This study aimed to evaluate antidiabetic potential of indigenous Lactobacillus isolates by measuring the ability of α-glucosidase inhibitory (AGI) and antioxidant activity. The mechanism of probiotics as antidiabetic can occur through the AGI and antioxidant activity of LAB, which is able to suppress oxidative stress that causes chronic inflammation and pancreatic β cell apoptosis, and then through the ability to produce exopolysaccharide (EPS) and short chain fatty acids (SCFA).@*Methodology and results@#MRS broth enriched with 10% glucose was selected as the growth medium for Lactobacillus. The growth medium was then centrifuged to obtain CFS and CFE was produced by extracting the medium with 96% ethanol as a solvent. The results showed that Lactobacillus pentosus MK42 had the highest AGI activity of 80.32 ± 2.20%. Antioxidant activity was not significantly different (P>0.05) among the tested Lactobacillus isolates. Lactobacillus paracasei RK41 produced the highest EPS (360.13 ± 50.01 mg/L), which was not significantly different (P>0.05) from Lactobacillus plantarum1 RB210. All Lactobacillus isolates were able to produce acetic acid, but not all were able to produce propionic and butyric acid. The highest propionic acid was produced by L. plantarum1 RB210 at 0.40 ± 0.31 mmol/L and the highest butyric acid was produced by L. plantarum1 MK2 at 0.22 ± 0.08 mmol/L.@*Conclusion, significance and impact of study@#The results show definitively that indigenous Lactobacillus isolates have considerable α-glucosidase inhibitor, antioxidant activity and the ability to produce of EPS and SCFA. This preliminary study suggests the use of indigenous Lactobacillus isolates which have the potential as antidiabetic agent, although the responsible compounds are unknown.


Assuntos
alfa-Glucosidases , Antioxidantes , Hipoglicemiantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA