Your browser doesn't support javascript.
loading
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры








Годовой диапазон
1.
Статья в Китайский | WPRIM | ID: wpr-1023093

Реферат

Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2+endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3+endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+natural killer T cell subset may promote autoprotection through interferon-y-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.

2.
Статья в Китайский | WPRIM | ID: wpr-991151

Реферат

Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng sa-ponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also char-acterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the tran-scriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.

Критерии поиска