Реферат
Abstract Molar incisor hypomineralization (MIH) is often accompanied by dental hypersensitivity and difficulty in achieving effective analgesia. Objective: This study evaluated the effectiveness of preemptive analgesia in children with severe MIH, post-eruptive enamel breakdown, and hypersensitivity. Methodology: Ibuprofen (10 mg/kg child weight) or placebo was administered, followed by infiltrative anesthesia and restoration with resin composite. Hypersensitivity was evaluated in five moments. The data were analyzed using the chi-square test, Fisher's exact test, and t-test. Results: Preemptive analgesia provided benefits for the treatment of severe cases of MIH, with an increase in the effectiveness of infiltrative anesthesia and improved patient comfort during the restorative procedure. Conclusion: Preemptive analgesia has shown efficacy in reducing hypersensitivity during restorative dental procedures, evidencing the significance of this study for patients with MIH and hypersensitivity.
Реферат
Objectives: To systematically evaluate the effects of hydroxypropyl methyl cellulose (HPMC) type (E5LV, E15LV, and K100LV); plasticizer type (glycerol and mannitol), plasticizer loading (0.12 and 0.24% w/w); and loading of prilocaine and lidocaine hydrochlorides combined at 1:1 ratio (0 and 47 mg/cm2) in the mechanical properties of buccal films. Methods: A quality by design (QbD) approach based on a full factorial design (3 x 23) and complementarily multivariate statistical tools i.e., principal component analysis (PCA), response surface methodology (RSM), and correlation matrix were used in this pursuit. The thickness, elongation at break, tensile strength, force at break, and Young`s modulus of the anesthetic buccal films obtained by solvent casting were assessed. Results: The QbD, PCA and RSM altogether demonstrated that all studied formulation variables, mainly the drug loading, affect the mechanical properties of the films at different significance levels. The multivariate analysis yielded the modelling of elongation at break, tensile strength, and force at break, which significantly correlated with each other. The drugs exerted a synergic plasticizing effect on the films, and the use of HPMC K100 LV (with greater hydroxypropyl substitution degree and viscosity) and mannitol favored their elasticity and resistance. Furthermore, the majority of the films fulfilled the requirements for buccal administration due to their softness and mechanical resistance. Conclusion: Mannitol is suitable plasticizer for manufacturing HPMC anesthetic buccal films with improved mechanical properties. These results are a step forward in the rational development of formulations for the replacement of needles in dentistry