Реферат
This study aimed to observe the protective effect of momordicine I, a triterpenoid compound extracted from momordica charantia L., on isoproterenol (ISO)-induced hypertrophy in rat H9c2 cardiomyocytes and investigate its potential mechanism. Treatment with 10 μM ISO induced cardiomyocyte hypertrophy as evidenced by increased cell surface area and protein content as well as pronounced upregulation of fetal genes including atrial natriuretic peptide, β-myosin heavy chain, and α-skeletal actin; however, those responses were markedly attenuated by treatment with 12.5 μg/ml momordicine I. Transcriptome experiment results showed that there were 381 and 447 differentially expressed genes expressed in comparisons of model/control and momordicine I intervention/model, respectively. GO enrichment analysis suggested that the anti-cardiomyocyte hypertrophic effect of momordicine I may be mainly associated with the regulation of metabolic processes. Based on our transcriptome experiment results as well as literature reports, we selected glycerophospholipid metabolizing enzymes group VI phospholipase A 2 (PLA2G6) and diacylglycerol kinase ζ (DGK-ζ) as targets to further explore the potential mechanism through which momordicine I inhibited ISO-induced cardiomyocyte hypertrophy.Our results demonstrated that momordicine I inhibited ISO-induced upregulations of mRNA levels and protein expressions of PLA2G6 and DGK-ζ. Collectively, momordicine I alleviated ISO-induced cardiomyocyte hypertrophy, which may be related to its inhibition of the expression of glycerophospholipid metabolizing enzymes PLA2G6 and DGK-ζ.
Реферат
To explore the potential mechanism of frankincense volatile oil in the prevention and treatment of cardiac hypertrophy based on in vitro cell experiment and network pharmacology. METHODS: The anti-hypertrophic effect of frankincense volatile oil was investigated by isoproterenol induced H9c2 cardiomyocytes hypertrophy model. The active chemical components and targets of frankincense volatile oil and targets associated with cardiac hypertrophy were obtained by CNKI, Pubmed, Pubchem databases, etc. String database and Cytoscape 3.8.0 software were used to construct protein-protein interaction network (PPI) and a network of "drug-active component-key target-disease" of frankincense volatile oil in order to screen the key targets of frankincense volatile oil against cardiac hypertrophy. The fluorescent quantitative PCR experiments were performed to verify those key targets. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation analysis of key target genes were performed using David online analysis tool. RESULTS: In vitro cell experiments showed that frankincense volatile oil significantly inhibited the isoproterenol induced increases in cardiomyocytes surface area and protein synthesis, and upregulations of ANP and β-MHC mRNA. A total of 87 active components and 36 ingredient-disease targets of frankincense volatile oil were screened. Network analysis showed that ESR1, NOS3, PTGS2, TNF, MAPK14, and PPARG were key targets. Fluorescence quantitative PCR experiments results indicated that frankincense volatile oil inhibited isoproterenol induced upregulations of ESR1, PTGS2, TNF, and MAPK14 mRNA levels, and downregulations of NOS3, PPARG mRNA levels, respectively. In addition, the GO functional enrichment analysis showed that its biological pathways mainly included lipopolysaccharide-mediated signaling pathway, positive regulation of nitric oxide biosynthetic process, caveola, enzyme binding, etc. The KEGG pathway enrichment analysis included 22 KEGG pathways, which were closely related to VEGF signaling pathway, TNF signaling pathway, sphingolipid signaling pathway and others. CONCLUSION: The active components of frankincense volatile oil may regulate VEGF signaling pathway, TNF signaling pathway, Sphingolipid signaling pathway by acting on ESR1, NOS3, PTGS2, TNF, MAPK14 and PPARG targets, thereby affecting the regulation of lipopolysaccharide-mediated signaling pathway, positive regulation of nitric oxide biosynthetic process, caveola, and enzyme binding, and improving cardiac hypertrophy.
Реферат
AIM: To investigate the effect of oxypeucedanin (OPD) on doxorubicin resistance in human breast cancer MCF-7/DOX cells and its possible mechanism. METHODS: MCF-7/DOX cells were cultured in vitro, MTT assay was used to detect the effect of OPD on the survival of MCF-7/DOX cells, and the effect of OPD combined with different concentrations of doxorubicin on the proliferation of MCF-7/DOX cells were investigated. The effect of OPD combined with doxorubicin on the expression of genes including MDR1, MRP1, AGPAT2, CHKA, CEPT1, DGKA, PCYT1A, PLA2G15 in MCF-7/DOX cells was measured by qRT-PCR. The effect of OPD combined with doxorubicin on the protein expression of MDR1, MRP1, CHKA and CCTα in MCF-7/DOX cells was determined by Western blot. RESULTS: The IC