Your browser doesn't support javascript.
loading
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 1.100
Фильтр
Добавить фильтры








Годовой диапазон
1.
Статья в Китайский | WPRIM | ID: wpr-1006562

Реферат

ObjectiveTo explore the comprehensive effects of Qingxin Zishen decoction on the symptom score and neuroendocrine indexes and the mechanism of the decoction in regulating KNDy neurons in the patients with menopausal syndrome. MethodA total of 60 patients with menopausal syndrome due to yin deficiency with effulgent fire who attended the menopausal outpatient of Jiangsu Province Hospital of Chinese Medicine were randomized into an experimental (Qingxin Zishen decoction) group (30 cases) and a control (femoston) group (30 cases). The treatment lasted for 12 weeks in both groups. The two groups were compared in terms of the comprehensive efficacy, frequency and degree of hot flashes and sweating, modified Kupperman score, and the serum levels of hypothalamic peptide kisspeptin, neurokinin B (NKB), dynorphin (Dyn), follicle-stimulating hormone (FSH), and estradiol (E2). Result① Comprehensive efficacy: The comprehensive efficacy of the two groups was comparable. ② Frequency and degrees of hot flashes and sweating: After treatment, the frequency and degrees of hot flashes and sweating in the two groups were reduced (P<0.05) and the control group outperformed the experimental group (P<0.05). ③ Modified Kupperman score and menopausal symptoms: After treatment, the modified Kupperman score decreased in both groups (P<0.05). After 4 weeks of treatment, the experimental group was superior to the control group in terms of the scores of dizziness and headache (P<0.05). ④ Serum levels of sex hormones: After treatment, the serum E2 level elevated and the FSH level lowered in both groups (P<0.05), and the changes were more obvious in the control group (P<0.05). ⑤ Neuroendocrine indexes: After treatment, the serum levels of kisspeptin and NKB in the two groups decreased (P<0.05), and the serum Dyn level in the experimental group increased (P<0.05). Moreover, the experimental group had higher Dyn level than the control group after treatment (P<0.05). ConclusionQingxin Zishen decoction can alleviate hot flashes, sweating, and other symptoms in the women with menopausal syndrome by acting on the KNDy neurons to lower the kisspeptin and NKB levels and elevate the Dyn level. The findings provide new ideas for the clinical treatment of hot flashes in menopause.

2.
Arq. neuropsiquiatr ; 82(5): s00441786765, 2024. tab, graf
Статья в английский | LILACS-Express | LILACS | ID: biblio-1557146

Реферат

Abstract One of the most important figures in the history of neurohistology, Giuseppe Levi (1872-1965) contributed in numerous ways to neuroscience, particularly in the fields of neuronal plasticity and the understanding of sensory ganglia. His daughter Natalia Ginzburg, née Levi (1916-1991), on the other hand, achieved fame as one of the most celebrated Italian writers of the twentieth century. Lessico Famigliare (Family Lexicon), from 1963, is a semibiographical account of her life in which she describes the life and character of her father in detail, providing depth and complexity to a seminal figures in the development of neuroscience. A thorough reading of the book enables modern neurologists to fully appreciate Levi's life and contributions, by means of humanizing him and giving context to his life and works. The present article provides a summary of Levi's and Natalia's lives and times as well as an analysis of the book and of the intimate, vivid descriptions of the neurohistologist's life.


Resumo Uma das figuras mais importantes da história da neuro-histologia, Giuseppe Levi (1872-1965) contribuiu de diversas maneiras para a neurociência, particularmente no campo da plasticidade neuronal e na compreensão dos gânglios sensitivos. Sua filha Natalia Ginzburg, nascida Levi (1916-1991), pelo contrário, adquiriu fama como uma das escritoras italianas mais célebres do século XX. Lessico Famigliare (Léxico familiar), de 1963, é um relato semibiográfico de sua vida, na qual ela descreve a vida e o comportamento de seu pai em detalhes, e confere profundidade e complexidade a uma figura seminal no desenvolvimento da neurociência. Uma leitura aprofundada do livro permite que neurologistas modernos apreciem a vida e as contribuições de Levi de forma mais completa, o humanizando e dando contexto a sua vida e suas obras. O autor resume as vidas e épocas de Levi e Natalia, bem como avalia o livro e as descrições íntimas, vívidas, da vida do neurohistologista.

3.
Dement. neuropsychol ; 18: e20230015, 2024. tab, graf
Статья в английский | LILACS-Express | LILACS | ID: biblio-1557680

Реферат

ABSTRACT. The immediate early gene exhibits activation markers in the nervous system consisting of ARC, EGR-1, and c-Fos and is related to synaptic plasticity, especially in the hippocampus. Immediate early gene expression is affected by physical exercise, which induces direct ARC, EGR-1, and c-Fos expression. Objective: To assess the impact of exercise, we conducted a literature study to determine the expression levels of immediate early genes (ARC, c-Fos, and EGR-1). Methods: The databases accessed for online literature included PubMed-Medline, Scopus, and ScienceDirect. The original English articles were selected using the following keywords in the title: (Exercise OR physical activity) AND (c-Fos) AND (Hippocampus), (Exercise OR physical activity) AND (ARC) AND (Hippocampus), (Exercise OR physical activity) AND (EGR-1 OR zif268) AND (Hippocampus). Results: Physical exercise can affect the expression of EGR-1, c-Fos, and ARC in the hippocampus, an important part of the brain involved in learning and memory. High-intensity physical exercise can increase c-Fos expression, indicating neural activation. Furthermore, the expression of the ARC gene also increases due to physical exercise. ARC is a gene that plays a role in synaptic plasticity and regulation of learning and memory, changes in synaptic structure and increased synaptic connections, while EGR-1 also plays a role in synaptic plasticity, a genetic change that affects learning and memory. Overall, exercise or regular physical exercise can increase the expression of ARC, c-Fos, and EGR-1 in the hippocampus. This reflects the changes in neuroplasticity and synaptic plasticity that occur in response to physical activity. These changes can improve cognitive function, learning, and memory. Conclusion: c-Fos, EGR-1, and ARC expression increases in hippocampal neurons after exercise, enhancing synaptic plasticity and neurogenesis associated with learning and memory.


RESUMO. O gene precoce imediato (GPI) exibe marcadores de ativação no sistema nervoso constituídos por ARC, EGR-1 e c-Fos e está relacionado à plasticidade sináptica, especialmente no hipocampo. A expressão do GPI é afetada pelo exercício físico, que induz a expressão direta de ARC, EGR-1 e c-Fos. Objetivo: Para avaliar o impacto do exercício físico, realizamos um estudo de literatura para determinar os níveis de expressão dos GPIs (ARC, c-Fos e EGR-1). Métodos: A base de dados utiliza literatura on-line, PubMed-Medline, Scopus e ScienceDirect. O artigo original em inglês usa as seguintes palavras-chave em seu título: (Exercise) AND (c-Fos) AND (Hippocampus), (Exercise) AND (ARC) AND (Hippocampus), (Exercise) AND (EGR-1) AND (Hippocampus). Resultados: O exercício físico pode afetar a expressão de EGR-1, c-fos e ARC no hipocampo, uma parte importante do cérebro envolvida na aprendizagem e na memória. O exercício físico aumenta a expressão do gene c-Fos; sua alta intensidade pode aumentar a expressão de c-Fos, indicando ativação neural. Além disso, a expressão do gene ARC aumentou devido ao exercício físico, onde ARC é um gene que desempenha um papel na plasticidade sináptica e na regulação da aprendizagem e da memória, nas mudanças na estrutura sináptica e no aumento das conexões sinápticas, enquanto o EGR-1 também desempenha um papel na plasticidade sináptica, uma mudança genética que afeta o aprendizado e a memória. De maneira geral, o exercício físico regular pode aumentar a expressão de ARC, c-fos e EGR-1 no hipocampo. Isso reflete as mudanças na neuroplasticidade e na plasticidade sináptica que ocorrem em resposta à atividade física. Essas mudanças podem melhorar a função cognitiva, o aprendizado e a memória. Conclusão: A expressão de c-Fos, EGR-1 e ARC aumenta após o exercício físico nos neurônios do hipocampo, para aumentar a plasticidade sináptica, a neurogênese associada ao aprendizado e à memória.

4.
J. coloproctol. (Rio J., Impr.) ; 43(4): 267-270, Oct.-Dec. 2023. tab, graf
Статья в английский | LILACS | ID: biblio-1528935

Реферат

Introduction: Cancer is a disease that emerges as a result of abnormal cell proliferation and their propensity to spread from one bodily region to another. There are over a hundred different types of cancer that impact individuals all over the world. It is difficult to identify in the early stages, but there are certain warning signals that the cells will turn malignant. Quality of life (QOL) is described by the World Health Organisation as "individuals' perception of life, values, objectives, standards, and interests within the cultural framework of the social environment in which they live and in relation to their goals, expectations, standards, and concerns." QOL assessment in health system is a multidimensional construct that can be measured by evaluating objective levels of health status filtered by the subjective perceptions and expectations of the individual. Aim and Objective: To assess socio-demographic factors and quality of life among cancer patients in tertiary care hospital. Materials and Methods: A hospital-based prospective observational study was conducted at Guru Gobind Singh Medical College and Hospital Faridkot district, Punjab (India). The study was conducted for a period of six months after getting approval from Institutional Ethical Committee (IEC). Generic instrument, SF-36 was used to assess the QOL. The study was analyzed on SPSS version 26.0 software. Descriptive and analytical analysis was used to describe the results. Results: Linear regression was conducted to see the relationship of physical functioning score with age and weight of the patients. The descriptive statistics shows the mean and standard deviation of the variable. The mean of physical functioning score was found to be (M = 27.82, SD = 15.635). The physical functioning score and age, weight of the patients in linear regression shows that the age and weight explain 17.5% Conclusion: Treatment revealed that severe and moderate activities restricted nearly half of the assessed patients, with body pain interfering with employment and routine activities. According to the findings of the current study, QOL deteriorates as the disease progresses. Cancer unquestionably has a detrimental influence on patients' quality of life, which is connected to the illness process itself, the therapy administered, and the length of the disease. (AU)


Тема - темы
Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Quality of Life , Surveys and Questionnaires , Health Profile , Neoplasms
5.
Gac. méd. Méx ; 159(5): 390-397, sep.-oct. 2023. graf
Статья в испанский | LILACS-Express | LILACS | ID: biblio-1534466

Реферат

Resumen Antecedentes: La aparición temprana de serotonina en el cerebro fetal y sus efectos en la morfogénesis cerebral apoyan su papel neurotrófico. Objetivo: Determinar la presencia de células serotoninérgicas y la expresión de triptófano-5-hidroxilasa (TPH), 5-hidroxitriptamina (5-HT), transportador de serotonina (SERT), receptor 5-HT1A y Pet-1 durante el desarrollo de la corteza cerebral, tanto in situ como en cultivo de tejidos. Material y métodos: Se realizó estudio observacional descriptivo en ratas Wistar preñadas. La presencia del tapón se consideró el inicio de la gestación; en los días 13, 16 y 17 se practicaron cesáreas para obtener los fetos e inmediatamente se disecaron los cerebros para identificar células serotoninérgicas, TPH, 5-HT, SERT, 5-HT1A y Pet-1 en cultivo de tejido e in situ mediante inmunomarcaje detectado en un microscopio confocal. Resultados: Células y terminales serotoninérgicas fueron observadas en el mesencéfalo el día 17 de gestación y en cocultivos de neopalio los días 13 y 16. También se observaron células inmunopositivas a TPH, 5-HT, SERT y Pet-1 en el neopalio en el día 12 del cultivo. Conclusiones: Se confirmó la presencia de células serotoninérgicas y otros elementos del sistema serotoninérgico en la corteza cerebral temprana, la cual puede ser transitoria y participar en los procesos de maduración cortical durante el desarrollo cerebral.


Abstract Background: Early appearance of serotonin in the fetal brain and its effects on brain morphogenesis support its neurotrophic role. Objective: To determine the presence of serotonergic cells and the expression of tryptophan-5-hydroxylase (TPH), 5-hydroxytryptamine (5-HT), serotonin transporter (SERT), 5-HT1A receptor and Pet-1 during the development of the cerebral cortex, both in situ and in tissue cultures. Material and methods: A descriptive, observational study was carried out in pregnant Wistar rats. The presence of the plug was regarded as the beginning of gestation. On days 13, 16 and 17, cesarean sections were performed to obtain the fetuses, and the brains were then immediately dissected to identify the presence of serotonergic cells, TPH, 5-HT, SERT, 5-HT1A and Pet-1 in tissue cultures and in situ by immunostaining detected on a confocal microscope. Results: Serotonergic cells and terminals were observed in the midbrain on day 17 of gestation, and in neopallium cocultures on days 13 and 16. TPH, 5-HT, SERT and Pet-1 immunopositive cells were also observed in the neopallium on day 12 of culture. Conclusions: The presence of serotonergic cells and other elements of the serotonergic system in the early cerebral cortex was confirmed, which may be transient and participate in cortical maturation processes during brain development.

6.
Int. j. morphol ; 41(4): 996-1002, ago. 2023. ilus, tab
Статья в английский | LILACS | ID: biblio-1514365

Реферат

SUMMARY: Many students regard neuroanatomy as a terrifying subject due to the complicated neuronal connections. Purpose of this research was to promote the easy and logical learning of neuroanatomy by systematizing a rule "three neurons of afferent nerves." The rule, in which the second neuron decussates and reaches the thalamus, was applied to as many structures as possible. The three neurons are drawn in a constant pattern to intuitively demonstrate the rule. The rule could be applied not only to the spinothalamic tract, medial lemniscus pathway, sensory cranial nerves (visual pathway, trigeminothalamic tract, taste pathway, and auditory pathway) and ascending reticular activating system, but also to the pontocerebellum (afferent to cerebrum), basal nuclei (direct pathway), and limbic system (medial limbic circuit). Exceptionally, some afferent nerves do not exactly follow the suggested rule. This simple rule, which corresponds to many pathways of the neuroanatomy, is expected to make the learning by novice students easier.


Muchos estudiantes consideran la neuroanatomía como un tema aterrador debido a las complicadas conexiones neuronales. El propósito de esta investigación fue promover el aprendizaje fácil y lógico de la neuroanatomía mediante la sistematización de una regla "tres neuronas de los nervios aferentes". La regla, en la que la segunda neurona se decusa y llega al tálamo, se aplicó a todas las estructuras cuando esto fue posible. Las tres neuronas se dibujan en un patrón constante para demostrar la regla intuitivamente. La regla podría aplicarse no solo al tracto espinotalámico, la vía del lemnisco medial, los nervios craneales sensoriales (vía visual, tracto trigeminotalámico, vía gustativa y vía auditiva) y el sistema de activación reticular ascendente, sino también al pontocerebelo (aferente al cerebro), núcleos basales (vía directa) y sistema límbico (circuito límbico medial). Excepcionalmente, algunos nervios aferentes no siguen exactamente la regla sugerida. Se espera que esta simple regla, que corresponde a muchas vías de la neuroanatomía, facilite el aprendizaje de los estudiantes principiantes.


Тема - темы
Humans , Neuroanatomy/education , Neurons, Afferent , Education, Medical, Undergraduate , Learning
7.
European J Med Plants ; 2023 Feb; 34(2): 1-12
Статья | IMSEAR | ID: sea-219534

Реферат

Aims: To primary rat embryonic hippocampal neurons in culture, ashwagandha or one of its active ingredients, withanolide A were added in the presence or absence of nutrient supplementation and then assayed for activity of the BDNF receptor, TrkB. Study Design: Primary hippocampal neurons were cultured and grown in nutrient-rich or nutrient-poor medium. Ashwagandha or withanolide A were then be added to both types of media with or without an inhibitor of TrkB or either the PI-3K or MAPK pathway. Place and Duration of Study: Department of Biological Sciences, California State University, Los Angeles, CA, USA, between July 2021 and August 2022. Methodology: Rat embryos were removed by cesarean section from mother rats at 18 days’ gestation and the hippocampi of the former dissected, plated into culture dishes, and treated with the appropriate drug(s) (see Study Design above). After 4 days, neurons were harvested for Western blotting. Optical density of Western blot bands were quantified and statistically analyzed in a 2-way ANOVA, using a level of statistical significance at P < .05. Results: Under normal conditions (with N2 supplement), ashwagandha, but not withanolide A, increased phospho-TrkB immunoreactivity when compared to the effects of vehicle (controls, F(11, 24) = 22.48, P < .001), although withanolide A did not quite reach statistical significance (P = .069) when compared to that of the controlled condition. Likewise, under nutrient-deprived conditions, both ashwagandha and withanolide A also increased phosphorylation of TrkB when compared to that of vehicle-nutrient-deprived conditions (P < .0001). The same results were obtained in the presence of inhibitors of TrkB itself and the PI-3K (ashwagandha, P < .001; withanolide A, P < .001) and MAPK (ashwagandha, P = .027; withanolide A, P = .045) pathways. Conclusion: Ashwagandha or withanolide A activates TrkB, in nutrient-deprived hippocampal neurons, underscoring its role in neuronal survival signaling.

8.
Rev. bras. cir. cardiovasc ; 38(1): 29-36, Jan.-Feb. 2023. tab, graf
Статья в английский | LILACS-Express | LILACS | ID: biblio-1423096

Реферат

ABSTRACT Introduction: Paraplegia may develop as a result of spinal cord ischemia-reperfusion injury in patients who underwent thoracoabdominal aortic surgery. The objective of this research is to determine the neuroprotective effects of ginsenoside Rd pretreatment in a rat model of spinal cord ischemia-reperfusion injury. Methods: Sprague-Dawley rats (n=36) were randomly assigned to three groups. The sham (n=12) and control (n=12) groups received normal saline orally. The Rd group (n=12) received ginsenoside Rd (100 mg/kg) orally 48 hours before the induction of spinal cord ischemia. Spinal cord ischemia was induced by aortic occlusion using a Fogarty balloon catheter in the Rd and control groups. A neurological assessment according to the motor deficit index and a histological evaluation of the spinal cord were performed. To evaluate the antioxidant activity of ginsenoside Rd, malondialdehyde levels and superoxide dismutase activity were determined. Further, the tissue levels of tumor necrosis factor-alpha and interleukin-1 beta were measured. Results: The Rd group showed significantly lower motor deficit index scores than did the control group throughout the entire experimental period (P<0.001). The Rd group demonstrated significantly greater numbers of normal motor neurons than did the control group (P=0.039). The Rd group exhibited decreased malondialdehyde levels (P<0.001) and increased superoxide dismutase activity (P=0.029) compared to the control group. Tumor necrosis factor-alpha and interleukin-1 beta tissue levels were significantly decreased in the Rd group (P<0.001). Conclusion: Ginsenoside Rd pretreatment may be a promising treatment to prevent ischemia-reperfusion injury in patients who undergo thoracoabdominal aortic surgery.

9.
Acta Anatomica Sinica ; (6): 296-304, 2023.
Статья в Китайский | WPRIM | ID: wpr-1015217

Реферат

[Abstract] Objective To investigate the effect of 6-gingerol treatment on cognitive behavior after hypoxic-ischemic brain injury (HIE) in neonatal mice, and to explore the protective mechanism of 6-gingerol on HIE brain injury in neonatal mice by observing the effects on neuronal survival and neural stem cell proliferation. Methods The right common carotid artery was ligated in Kunming mice (78) on the 7th day after birth and HIE model was established after 90 minutes of hypoxic treatment. 6-gingerol was injected intraperitoneally. The cognitive behavior was detected by Morris water maze test; 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used to observe the changes of brain injury; The changes of synaptic structure and number were obseved by transmission electron microscopy; HE staining, Nissl staining and dihydroethidium(DHE) staining were used to observe the pathomorphological changes of hippocampus in each group; The proliferation of neural stem cells and the expression of related transcription factors were detected by immunofluorescence and Real-time PCR; The changes of Akt signal pathway were detected by Western blotting. Results 6-gingerol treatment could improve the long-term learning and memory ability, reduce the brain injury and brain edema of neonatal mice after HIE, and improve synaptic plasticity of mice after HIE. In the 6-gingerol treatment group, the disorder of hippocampal cells in the diseased side of HIE was improved, the number of necrotic cells decreased, the proliferation ability of hippocampal neural stem cells and the expression levels of nestin and sex determining region box transcription factor 2 (Sox2) related transcription factors increased significantly, and the level of phosphorylated Akt (p-Akt) increased. Conclusion It is found that 6-gingerol can improve the learning and memory ability of HIE mice in adulthood and reduce brain tissue injury after HIE. 6-gingerol may play a role in inhibiting the production of reactive oxygen species(ROS), reducing neuronal injury and upregulating the expression of Akt signal pathway, promoting the proliferation of hippocampal neural stem cells, so as to provide potential drugs for the treatment of neonatal HIE.

10.
Chinese Pharmacological Bulletin ; (12): 1189-1194, 2023.
Статья в Китайский | WPRIM | ID: wpr-1013795

Реферат

Aim To explore the protective effect of Zishen Huoxue Prescription on OGD/R-induced primary hippocampal neuron damage in rats and the possible mechanism. Methods After the isolated primary hippocampal neurons were identified by immunofluorescence, OGD/R induced neuronal damage, and the changes of autophagic flux at different re-oxygenation time were observed by confocal laser scanning microscopy. After OGD/R-induced primary hippocampal neurons were intervened with serum containing Zishen Huoxue Prescription, cell viability was detected by CCK-8, cell apoptosis was detected by flow cytometry, autophagosomes were detected by transmission electron microscopy, and autophagy-related protein expressions were detected by Western blot. Results 10% Zishen Huoxue Prescription-containing serum could significantly improve cell viability and reduce the proportion of cell apoptosis, increase the number of autophagosomes in neurons, and up-regulate the expression of autophagy-related protein PINK1, Parkin, and pATG16L1. Conclusions Zishen Huoxue Prescription can effectively resist OGD/R-induced apoptosis of primary hippocampal neurons in rats, and its effect may be related to the regulation of PINK1-Parkin pathway to promote mitophagy.

11.
Acta Pharmaceutica Sinica B ; (6): 3365-3381, 2023.
Статья в английский | WPRIM | ID: wpr-1011129

Реферат

Vincristine, a widely used chemotherapeutic agent for treating different cancer, often induces severe peripheral neuropathic pain. A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodynia and hyperalgesia. However, mechanisms underlying vincristine-induced mechanical allodynia and hyperalgesia are not well understood. In the present study, we show with behavioral assessment in rats that vincristine induces mechanical allodynia and hyperalgesia in a PIEZO2 channel-dependent manner since gene knockdown or pharmacological inhibition of PIEZO2 channels alleviates vincristine-induced mechanical hypersensitivity. Electrophysiological results show that vincristine potentiates PIEZO2 rapidly adapting (RA) mechanically-activated (MA) currents in rat dorsal root ganglion (DRG) neurons. We have found that vincristine-induced potentiation of PIEZO2 MA currents is due to the enhancement of static plasma membrane tension (SPMT) of these cells following vincristine treatment. Reducing SPMT of DRG neurons by cytochalasin D (CD), a disruptor of the actin filament, abolishes vincristine-induced potentiation of PIEZO2 MA currents, and suppresses vincristine-induced mechanical hypersensitivity in rats. Collectively, enhancing SPMT and subsequently potentiating PIEZO2 MA currents in primary afferent neurons may be an underlying mechanism responsible for vincristine-induced mechanical allodynia and hyperalgesia in rats. Targeting to inhibit PIEZO2 channels may be an effective analgesic method to attenuate vincristine-induced mechanical hypersensitivity.

12.
Journal of Integrative Medicine ; (12): 496-508, 2023.
Статья в английский | WPRIM | ID: wpr-1010954

Реферат

OBJECTIVE@#This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats.@*METHODS@#The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA.@*RESULTS@#APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05).@*CONCLUSION@#EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.


Тема - темы
Rats , Animals , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Electroacupuncture , Pain, Postoperative , Interferons
13.
Frontiers of Medicine ; (4): 1204-1218, 2023.
Статья в английский | WPRIM | ID: wpr-1010813

Реферат

Brain development requires a delicate balance between self-renewal and differentiation in neural stem cells (NSC), which rely on the precise regulation of gene expression. Ten-eleven translocation 2 (TET2) modulates gene expression by the hydroxymethylation of 5-methylcytosine in DNA as an important epigenetic factor and participates in the neuronal differentiation. Yet, the regulation of TET2 in the process of neuronal differentiation remains unknown. Here, the protein level of TET2 was reduced by the ubiquitin-proteasome pathway during NSC differentiation, in contrast to mRNA level. We identified that TET2 physically interacts with the core subunits of the glucose-induced degradation-deficient (GID) ubiquitin ligase complex, an evolutionarily conserved ubiquitin ligase complex and is ubiquitinated by itself. The protein levels of GID complex subunits increased reciprocally with TET2 level upon NSC differentiation. The silencing of the core subunits of the GID complex, including WDR26 and ARMC8, attenuated the ubiquitination and degradation of TET2, increased the global 5-hydroxymethylcytosine levels, and promoted the differentiation of the NSC. TET2 level increased in the brain of the Wdr26+/- mice. Our results illustrated that the GID complex negatively regulates TET2 protein stability, further modulates NSC differentiation, and represents a novel regulatory mechanism involved in brain development.


Тема - темы
Animals , Mice , DNA-Binding Proteins/genetics , Cell Differentiation , Neural Stem Cells , Translocation, Genetic , Ubiquitins/genetics , Ligases/genetics
14.
Neuroscience Bulletin ; (6): 1544-1560, 2023.
Статья в английский | WPRIM | ID: wpr-1010633

Реферат

The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.


Тема - темы
Mice , Animals , Motor Cortex , Corpus Striatum/physiology , Neostriatum , Neurons/physiology , Reaction Time
15.
Chinese Journal of Biologicals ; (12): 1522-1529, 2023.
Статья в Китайский | WPRIM | ID: wpr-1005879

Реферат

@#Parkinson's disease(PD)is the second common neurodegenerative disease that mostly occurs in middle-aged and elderly people. Currently,Levodopa is the main first-line treatment drug,but the long-term efficacy of patients is not good,and even side effects such as“on-off”phenomenon and orthostatic hypotension occur. Glucagon-like peptide-1receptor agonists(GLP-1RA)and analogues are endogenous peptide hormones that can be released into the blood and enter the central nervous system to exert neuroprotection by crossing the blood-brain barrier. Numerous studies have shown that GLP-1RA can improve movement disorders and restore dopaminergic neuron activity in PD. However,the mechanism of GLP-1RA is not yet fully clear. This paper summarized the mechanism of GLP-1RA and its analogues in improving PD movement disorders and restoring dopaminergic neuron activity,and reviewed the aspects of reducing neuroinflammation,inhibiting oxidative stress,inhibiting apoptosis,regulating mitochondrial morphology,increasing neuronal protrusions,enhancing autophagy,and regulating intestinal flora homeostasis,so as to provide new ideas for research of the mechanisms of PD and development of GLP-1RA-related new drugs.

16.
Статья в Китайский | WPRIM | ID: wpr-979216

Реферат

ObjectiveTo construct a neural network-like tissue with the potential of synaptic formation in vitro by seeding human induced pluripotent stem cell-derived neural precursor cells (hiPSC-NPCs) on decellularized optic nerve (DON), so as to provide a promising approach for repair of nerve tissue injury. MethodsThrough directional induction and tissue engineering technology, human induced pluripotent stem cells (hiPSCs) and 3D DON scaffolds were combined to construct neural network-like tissues. Then the hiPSCs were directionally induced into human neural precursor cells (hNPCs) and neurons. Immunofluorescence staining was used to identify cell differentiation efficiency. 3D DON scaffolds were prepared. Morphology and cytocompatibility of scaffolds were identified by scanning electron microscopy and Tunnel staining. Induced hiPSC-NPCs were seeded on DON scaffolds. Immunofluorescence staining, scanning electron microscopy, transmission electron microscopy and patch clamp were used to observe the morphology and functional identification of constructed neural network tissues. Results①The results of immunofluorescence staining suggested that most of hiPSC-NPCs differentiated into neurons in vitro. We had successfully constructed a neural network dominated by neurons. ② The results of scanning electron microscopy and immunohistochemistry suggested that a neural network-like tissue with predominating excitatory neurons in vitro was successfully constructed. ③The results of immunohistochemical staining, transmission electron microscopy and patch clamp indicated that the neural network-like tissue had synaptic transmission function. ConclusionA neural network-like tissue mainly composed of excitatory neurons has been constructed by the combination of natural uniform-channel DON scaffold and hiPSC-NPCs, which has the function of synaptic transmission. This neural network plays a significant role in stem cell derived replacement therapy, and offers a promising prospect for repair of spinal cord injury (SCI) and other neural tissue injuries.

17.
China Pharmacy ; (12): 1076-1080, 2023.
Статья в Китайский | WPRIM | ID: wpr-972950

Реферат

OBJECTIVE To study the improvement effects and mechanisms of Tujia medicine musk needle therapy on cognitive dysfunction in ischemic stroke model rats. METHODS Totally 44 rats were randomly divided into sham operation group, model group, musk needle treatment group and ordinary acupuncture group, with 11 rats in each group. Except for the sham operation group, ischemic stroke model was induced by modified suture method in other groups. After modeling, musk needle treatment group and the ordinary acupuncture group were treated with Tujia musk needle (containing 3 mg of artificial musk) and traditional filiform needle respectively to intervene in the muscle layer of the contralateral scalp motor area, with an intervention duration of 3 courses. The sham operation group and model group were not given any treatment. The neurological deficits score in rats were recorded and Morris water maze behavioral tests were conducted. The morphology of neurons in the cortical area of rats was observed, and the expression of DCX/BrdU and NeuN/BrdU co-labeled cells in the ischemic subependymal area was observed. The plasma levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor(VEGF) in rats were tested. RESULTS Compared with sham operation group, neurological deficit score of model group was increased significantly, escape latency prolonged significantly, and the times of crossing platform significantly reduced (P<0.05); the neuronal structure was significantly damaged, and the number of surrounding Nissl bodies decreased; the number of DCX/BrdU and NeuN/BrdU co- labeled cells in the ischemic subependymal area were significantly increased (P<0.05); the levels of HIF-1α and VEGF in plasma were significantly increased (P<0.05). Compared with model group, neurological deficits score, escape latency, the times of crossing platform were all reversed significantly in musk needle treatment group and ordinary acupuncture group (P<0.05); the neuronal structure was improved, and the number of Nissl bodies increased; the number of DCX/BrdU and NeuN/BrdU co-labeled cells in the ischemic subependymal area were significantly increased (P<0.05); the plasma levels of HIF-1α and VEGF were significantly increased (P<0.05). Compared with ordinary acupuncture group, the plasma level of HIF-1α was reduced (the difference was not statistically significant), while the level of VEGF was significantly increased (P<0.05). CONCLUSIONS Tujia medicine musk needle therapy can significantly improve the cognitive dysfunction in ischemic stroke model rats, and its mechanism of action may be associated with promoting migration and differentiation of neural stem cell in ischemic subependymal area, preventing the excessive release of HIF-1α and increasing the expression of VEGF.

18.
Neuroscience Bulletin ; (6): 245-260, 2023.
Статья в английский | WPRIM | ID: wpr-971567

Реферат

Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.


Тема - темы
Mice , Animals , Zona Incerta/metabolism , Neurons/metabolism , Fear/physiology , Somatostatin/metabolism
19.
Neuroscience Bulletin ; (6): 1050-1068, 2023.
Статья в английский | WPRIM | ID: wpr-982460

Реферат

The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.


Тема - темы
Mice , Animals , Axon Initial Segment , Synapses/physiology , Pyramidal Cells/physiology , Cerebral Cortex , Axons/physiology
20.
Neuroscience Bulletin ; (6): 1009-1026, 2023.
Статья в английский | WPRIM | ID: wpr-982449

Реферат

Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.


Тема - темы
Humans , Hippocampus/physiology , Anxiety , Anxiety Disorders , Neurotransmitter Agents , Neuropeptides
Критерии поиска