Your browser doesn't support javascript.
loading
Шоу: 20 | 50 | 100
Результаты 1 - 4 de 4
Фильтр
Добавить фильтры








Годовой диапазон
1.
Статья в Китайский | WPRIM | ID: wpr-1021556

Реферат

BACKGROUND:With the increasing number of tendon transplantation surgeries for tendon injuries,the demand for tendon tissue engineering scaffolds is increasing.Research has found that good pore size and porosity of implants contribute to tissue healing. OBJECTIVE:To review the types of materials currently published for tendon tissue engineering scaffolds and investigate the correlation between various tendon tissue engineering scaffold materials and pores. METHODS:Articles were retrieved on PubMed,Embase,and Web of Science databases,using keywords"tendon"or"ligament"and"tissue scaffold"as well as"porosity"or"permeability".A total of 84 articles meeting the criteria were included to summarize,discuss and anticipate future development directions. RESULTS AND CONCLUSION:The materials used in the research of tendon tissue engineering are mainly divided into two categories:natural tendon scaffold materials and artificial synthetic tendon scaffold materials.Natural scaffold materials include autologous tendons,allogeneic tendons,and xenogeneic tendons.Autogenous tendons and allogeneic tendons have been used in clinical practice for many years.During the preparation of allogeneic tendons and animal experiments,it was found that the process of acellular disinfection resulted in an increase in the pore size and porosity of both types of tendons,but the specific reasons and mechanisms have not been further studied.There are many types of artificial tendon scaffold materials currently being studied,among which artificial ligament products such as Leeds Keio and LARS(Ligament Advanced Reinforcement System)are still in use in some countries.Other materials have not been promoted in clinical practice due to immature technology and other issues.The pores and porosity of artificial tendon scaffold materials also show different trends due to their different materials and preparation techniques.

2.
Статья в Китайский | WPRIM | ID: wpr-1021735

Реферат

BACKGROUND:The treatment of bone defects has always been a pressing clinical challenge for medical practitioners.The use of gelatin methacryloyl for three-dimensional extracellular cultivation offers a promising direction for the treatment of extensive bone defects. OBJECTIVE:To review the research progress of gelatin methacryloyl as a three-dimensional cell culture scaffold in bone tissue engineering,aiming to provide further references for clinical bone defect repair. METHODS:Computerized searches were conducted on the CNKI and PubMed databases for articles published from January 1986 to August 2023.The search terms in Chinese and English were"bone defect,bone tissue engineering,biomaterial scaffold,hydrogel,photocrosslinked hydrogel,gelatin methacryloyl,three-dimensional culture,cell culture"and"bone defect,bone tissue engineering,biomaterial scaffold,hydrogel,gelatin methacryloyl,three-dimensional culture,cell culture",respectively.Finally,68 articles were included for review and analysis. RESULTS AND CONCLUSION:(1)When compared to two-dimensional culture techniques,three-dimensional culture can construct a three-dimensional space under aseptic conditions,more effectively simulating the in vivo environment.It provides cells with the appropriate temperature,pH,and sufficient nutrients,allowing cells to grow and proliferate normally outside the body while maintaining their regular structure and function,offering unique advantages.(2)In the realm of bone tissue engineering,hydrogels stand out as the preferred choice for biomaterial scaffolds.Their excellent biocompatibility,degradability,and inherent three-dimensional network structure make them invaluable in bone regeneration studies.(3)The physical and biological properties of gelatin methacryloyl are influenced by factors such as concentration,light exposure duration,type of photoinitiator,and the overall reaction system.These properties can affect cell adhesion,growth,and proliferation,and even the morphology and function of cells.(4)Gelatin methacryloyl,recognized for its excellent biocompatibility,tunable physical properties,injectability,and photosensitivity,has been extensively used in three-dimensional cell encapsulation,three-dimensional bioprinting,and stereolithography techniques based on digital light processing in three-dimensional cell culture systems.(5)Utilizing a range of composite gelatin methacryloyl in three-dimensional cell culture can significantly promote vascularization and bone regeneration,paving the way for enhanced clinical solutions to bone defects.(6)At present,there is a noticeable gap in standardized guidelines concerning the sources,synthesis methods,and safety of gelatin methacryloyl.It is crucial to intensify research efforts to optimize gelatin methacryloyl's application in the three-dimensional cell culture field.

3.
Статья в Китайский | WPRIM | ID: wpr-823259

Реферат

@#Tissue engineering has been applied to induce pulp-dentin complex regeneration, and proposed the concept of regenerative endodontics. As a new subject in stomatology, regenerative endodontics promotes root development and pulp regeneration with the combination of dental stem cells, biomaterial scaffolds and growth factors. Clinically, pulp regenerative technique has been used to treat necrosis and periapical periodontitis of immature permanent teeth. Numerous case reports and studies have proved the possibility of pulp regeneration, and regenerative endodontics will become a potential new treatment alternative of dental pulp diseases for dental clinician. In the present paper, we will summarize and analyze the current process and prospective of regenerative endodontics.

4.
Статья в английский | WPRIM | ID: wpr-65158

Реферат

Here, we describe two dogs in which canine small intestinal submucosa (SIS) was implanted as a biomaterial scaffold during perineal herniorrhaphy. Both dogs had developed severe muscle weakness, unilaterally herniated rectal protrusions, and heart problems with potential anesthetic risks. Areas affected by the perineal hernia (PH) located between the internal obturator and external anal sphincter muscles were reconstructed with naive canine SIS sheets. In 12 months, post-operative complications such as wound infections, sciatic paralysis, rectal prolapse, or recurrence of the hernia were not observed. Symptoms of defecatory tenesmus also improved. Neither case showed any signs of rejection or specific immune responses as determined by complete and differential cell counts. Our findings demonstrate that canine SIS can be used as a biomaterial scaffold for PH repair in dogs.


Тема - темы
Animals , Dogs , Male , Biocompatible Materials , Dog Diseases/surgery , Hernia, Abdominal/surgery , Herniorrhaphy/veterinary , Intestinal Mucosa/transplantation , Intestine, Small/transplantation , Perineum/surgery , Postoperative Complications/veterinary , Transplantation, Homologous/veterinary
Критерии поиска