Your browser doesn't support javascript.
loading
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 12.690
Фильтр
Добавить фильтры








Годовой диапазон
1.
Int. j. morphol ; 42(3): 601-606, jun. 2024. ilus
Статья в английский | LILACS | ID: biblio-1564592

Реферат

SUMMARY: Currently, training in the field of anatomy requires the implementation of learning and knowledge technologies (TAC). Therefore, the objective of this work was to use digital images taken of plastinated canine brains, hearts, and kidneys to create an interactive atlas that facilitates the teaching-learning of the anatomy of these organs. The research was carried out in 3 phases. In the first, canine brains, hearts and kidneys were obtained using the cold-temperature silicone plastination. In the second stage, photographs were taken, the images were edited with Adobe Photoshop and converted to SVG format using Adobe Illustrator. During the last phase, the 2D atlas was created using MongoDB and Node.js for the backend and Vue.js as the framework for the frontend. In addition, it was used three.js to render the 3D models. As a result, the 'Interactive Canine Atlas', ATINCA, was created. The atlas comprises 27 interactive images and 27 in atlas mode view (28 of the brain, 20 of the heart, and 6 of the kidney). Furthermore, the atlas features 3D models of the three organs. The developed atlas constitutes the first digital tool created in Ecuador based on local institutional needs, including a 3D format. Consequently, ATINCA will be integrated into the curricula as a digital material that will facilitate significant autonomous and collaborative learning of canine anatomical knowledge.


Actualmente, la formación en el campo de la anatomía requiere la implementación de tecnologías del aprendizaje y el conocimiento (TAC). Por ello, el objetivo del trabajo fue utilizar imágenes digitales tomadas de cerebros, corazones y riñones caninos plastinados para crear un atlas interactivo que facilite la enseñanza-aprendizaje de la anatomía de estos órganos. La investigación se llevó a cabo en tres fases. En la primera se obtuvieron cerebros, corazones y riñones caninos mediante la técnica de plastinación con silicona al frío. En la segunda etapa se tomaron fotografías, las imágenes se editaron con Adobe Photoshop y se convirtieron a formato SVG con Adobe Illustrator. Durante la última fase, se creó el atlas 2D usando MongoDB y Node.js para el backend y Vue.js como framework para el frontend. Además, se utilizó three.js para renderizar los modelos 3D. Como resultado se creó el Atlas Interactivo del Canino, ATINCA. El atlas cuenta con 27 imágenes interactivas y 27 en vista modo atlas (28 del cerebro, 20 del corazón y 6 del riñón). Además, el atlas presenta modelos 3D de los tres órganos. El atlas desarrollado constituye la primera herramienta digital creada en el Ecuador con base en necesidades institucionales locales y donde se incluye el formato 3D. Con lo cual, ATINCA podrá incorporarse en las mallas curriculares como material digital que facilitará el aprendizaje autónomo y colaborativo significativo de conocimientos anatómicos de los órganos caninos.


Тема - темы
Animals , Dogs , Imaging, Three-Dimensional , Anatomy/education , Models, Anatomic , Silicones , Teaching , Brain/anatomy & histology , Atlas , Education, Medical/methods , Plastination , Heart/anatomy & histology , Kidney/anatomy & histology , Learning
2.
Neuroscience Bulletin ; (6): 171-181, 2024.
Статья в английский | WPRIM | ID: wpr-1010653

Реферат

Even though retinal images of objects change their locations following each eye movement, we perceive a stable and continuous world. One possible mechanism by which the brain achieves such visual stability is to construct a craniotopic coordinate by integrating retinal and extraretinal information. There have been several proposals on how this may be done, including eye-position modulation (gain fields) of retinotopic receptive fields (RFs) and craniotopic RFs. In the present study, we investigated coordinate systems used by RFs in the lateral intraparietal (LIP) cortex and frontal eye fields (FEF) and compared the two areas. We mapped the two-dimensional RFs of neurons in detail under two eye fixations and analyzed how the RF of a given neuron changes with eye position to determine its coordinate representation. The same recording and analysis procedures were applied to the two brain areas. We found that, in both areas, RFs were distributed from retinotopic to craniotopic representations. There was no significant difference between the distributions in the LIP and FEF. Only a small fraction of neurons was fully craniotopic, whereas most neurons were between the retinotopic and craniotopic representations. The distributions were strongly biased toward the retinotopic side but with significant craniotopic shifts. These results suggest that there is only weak evidence for craniotopic RFs in the LIP and FEF, and that transformation from retinotopic to craniotopic coordinates in these areas must rely on other factors such as gain fields.


Тема - темы
Animals , Macaca , Visual Fields , Frontal Lobe/physiology , Eye Movements , Brain
3.
Neuroscience Bulletin ; (6): 157-170, 2024.
Статья в английский | WPRIM | ID: wpr-1010660

Реферат

In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.


Тема - темы
Adult , Humans , Brain Mapping , Pain , Empathy , Racism , Gyrus Cinguli/physiology , Magnetic Resonance Imaging , Brain/physiology
4.
Neuroscience Bulletin ; (6): 50-64, 2024.
Статья в английский | WPRIM | ID: wpr-1010668

Реферат

The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.


Тема - темы
Child , Humans , Cognitive Training , Magnetic Resonance Imaging , Brain , Brain Mapping , Motor Cortex
5.
Neuroscience Bulletin ; (6): 65-78, 2024.
Статья в английский | WPRIM | ID: wpr-1010670

Реферат

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.


Тема - темы
Humans , Ischemic Stroke , Brain/metabolism , Macrophages , Brain Ischemia/metabolism , Microglia/metabolism , Gene Expression Profiling , Anti-Inflammatory Agents , Neuronal Plasticity/physiology , Infarction/metabolism
6.
Neuroscience Bulletin ; (6): 1-16, 2024.
Статья в английский | WPRIM | ID: wpr-1010677

Реферат

Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.


Тема - темы
Mice , Animals , Astrocytes , Neuroglia/physiology , Diencephalon , Brain , Neurons , Mammals
7.
Neuroscience Bulletin ; (6): 79-89, 2024.
Статья в английский | WPRIM | ID: wpr-1010684

Реферат

Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.


Тема - темы
Humans , Muscle, Skeletal , Electromyography/methods , Electroencephalography/methods , Brain , Brain Mapping
8.
Статья в английский | WPRIM | ID: wpr-1006541

Реферат

Objective@#This study aimed to determine the incidence of encephalopathy among hospitalized patients with COVID-19. @*Methods@#This was a retrospective observational study conducted in a tertiary hospital in Cebu City, Philippines. This study is a complete enumeration of all records of adult patients admitted for COVID-19 detected through polymerase chain reaction from March 1, 2020 to September 30, 2021. The cases were then classified as to the presence or absence of encephalopathy. @*Results@#The study determined that 6 in every 1000 admitted COVID-19 patients developed encephalopathy. The clinico-demographic profile of patients with encephalopathy were mostly elderly with a mean age of 67, males (55.7%), and obese stage I (61.1%). Encephalopathy was more likely to develop in patients with type 2 diabetes mellitus (80.1%) and coronary artery disease (40.0%). Most patients who did not have encephalopathy however had a history of CVD. Most patients (66.7%) who developed encephalopathy were dyspneic on presentation. Laboratory examination results showed an increase in fasting blood sugar and elevated levels of LDH, CRP, serum ferritin, procalcitonin, and D-dimer. Majority of patients (66.7%) with encephalopathy were intubated. Taking into consideration the stage of infection and the incidence of encephalopathy, most patients (66.6%) were in the hyperinflammatory stage. The number of hospitalization days and severity of illness did not have any association with developing encephalopathy. Dichotomous categorization of outcomes into deceased and discharged showed that clinical outcomes and the development of encephalopathy were significantly associated, with 66.7% of patients with encephalopathy expiring during their course of hospitalization.@*Conclusion@#The incidence of encephalopathy among admitted COVID-19 patients was 6 in every 1000 patients. Encephalopathy was more common in elderly males who were obese with type 2 diabetes mellitus and coronary artery disease. The most common presentation of patients who developed encephalopathy was dyspnea. Collated laboratory results showed an increase in fasting blood sugar and elevated levels of LDH, CRP, serum ferritin, procalcitonin, and D-dimer. Majority of patients with encephalopathy were intubated and were in the hyperinflammatory stage of COVID-19 infection. Dichotomous categorization of outcomes into deceased and discharged showed that clinical outcomes and the development of encephalopathy were significantly associated, with most patients with encephalopathy expiring during their course of hospitalization.


Тема - темы
COVID-19 , Brain Diseases , Brain , SARS-CoV-2
9.
Статья в Китайский | WPRIM | ID: wpr-1009898

Реферат

Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging tool that reflects the activity and function of brain neurons by monitoring changes in brain oxygen metabolism based on the neurovascular coupling mechanism. It is non-invasive and convenient, especially suitable for monitoring neonatal brain function. This article provides a comprehensive review of research related to the developmental patterns of brain networks concerning language, music, and emotions in neonates using fNIRS. It also covers brain network imaging in neonatal care, resting-state brain network connectivity patterns, and characteristics of brain functional imaging in disease states of neonates using fNIRS.


Тема - темы
Infant, Newborn , Humans , Spectroscopy, Near-Infrared , Brain/diagnostic imaging , Emotions , Language , Technology
10.
Int. j. morphol ; 41(5): 1310-1316, oct. 2023. tab
Статья в английский | LILACS | ID: biblio-1521015

Реферат

SUMMARY: Although COVID-19 is primarily considered a respiratory pathology, it has been observed to impact other bodily systems, including the nervous system. While several studies have investigated anatomical changes in brain structures, such as volume or thickness post-COVID-19, there are no comprehensive reviews of these changes using imaging techniques for a holistic understanding. The aim of this study was to systematically analyze the literature on brain changes observed through neuroimaging after COVID-19. We conducted a systematic review according to PRISMA guidelines using Web of Science, Scopus, Medline, Pubmed, Sciencedirect, and LitCOVID. We selected studies that included adult patients during or after COVID-19 development, a control group or pre-infection images, and morphometric measurements using neuroimaging. We used the MSQ scale to extract information on sample characteristics, measured anatomical structures, imaging technique, main results, and methodological quality for each study. Out of 1126 identified articles, we included 19 in the review, encompassing 1155 cases and 1284 controls. The results of these studies indicated a lower volume of the olfactory bulb and variable increases or decreases in cortical and limbic structures' volumes and thicknesses. Studies suggest that brain changes occur post-COVID-19, primarily characterized by a smaller olfactory bulb. Additionally, there may be variations in cortical and limbic volumes and thicknesses due to inflammation or neuroplasticity, but these findings are not definitive. These differences may be attributed to methodological, geographical, and temporal variations between studies. Thus, additional studies are required to provide a more comprehensive and quantitative view of the evidence.


Aunque el COVID-19 se considera principalmente una patología respiratoria, se ha observado que afecta otros sistemas corporales, incluido el sistema nervioso. Si bien varios estudios han investigado los cambios anatómicos en las estructuras cerebrales, como el volumen o el grosor posteriores a la COVID-19, no hay revisiones exhaustivas de estos cambios que utilicen técnicas de imágenes para una comprensión holística. El objetivo de este estudio fue analizar sistemáticamente la literature sobre los cambios cerebrales observados a través de neuroimagen después de COVID-19. Realizamos una revisión sistemática de acuerdo con las pautas PRISMA utilizando Web of Science, Scopus, Medline, Pubmed, Sciencedirect y LitCOVID. Seleccionamos estudios que incluyeron pacientes adultos durante o después del desarrollo de COVID-19, un grupo de control o imágenes previas a la infección y mediciones morfométricas mediante neuroimagen. Utilizamos la escala MSQ para extraer información sobre las características de la muestra, las estructuras anatómicas medidas, la técnica de imagen, los principales resultados y la calidad metodológica de cada estudio. De 1126 artículos identificados, incluimos 19 en la revisión, que abarca 1155 casos y 1284 controles. Los resultados de estos estudios indicaron un menor volumen del bulbo olfatorio y aumentos o disminuciones variables en los volúmenes y espesores de las estructuras corticales y límbicas. Los estudios sugieren que los cambios cerebrales ocurren después del COVID-19, caracterizados principalmente por un bulbo olfatorio más pequeño. Además, pueden haber variaciones en los volúmenes y grosores corticales y límbicos debido a la inflamación o la neuroplasticidad, pero estos hallazgos no son definitivos. Estas diferencias pueden atribuirse a variaciones metodológicas, geográficas y temporales entre estudios. Por lo tanto, se requieren estudios adicionales para proporcionar una visión más completa y cuantitativa de la evidencia.


Тема - темы
Humans , Brain/pathology , Brain/diagnostic imaging , COVID-19/complications , Neuroimaging , Neurologic Manifestations
11.
Int. j. morphol ; 41(5): 1527-1536, oct. 2023. ilus
Статья в английский | LILACS | ID: biblio-1521022

Реферат

SUMMARY: The 12C6+ heavy ion beam irradiation can cause bystander effects. The inflammatory cytokines, endocrine hormones and apoptotic proteins may be involved in 12C6+ irradiation-induced bystander effects. This study characterized the protective effects and mechanisms of Huangqi decoction (HQD) against 12C6+ radiation induced bystander effects. Wistar rats were randomly divided into control, 12C6+ heavy ion irradiation model, and high-dose/medium-dose/low-dose HQD groups. HE staining assessed the pathological changes of brain and kidney. Peripheral blood chemical indicators as well as inflammatory factors and endocrine hormones were detected. Apoptosis was measured with TUNEL. Proliferating cell nuclear antigen (PCNA) expression was determined with real-time PCR and Western blot.Irradiation induced pathological damage to the brain and kidney tissues. After irradiation, the numbers of white blood cells (WBC) and monocyte, and the expression of interleukin (IL)-2, corticotropin-releasing hormone (CRH) and PCNA decreased. The damage was accompanied by increased expression of IL-1β, IL-6, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) as well as increased neuronal apoptosis. These effects were indicative of radiation-induced bystander effects. Administration of HQD attenuated the pathological damage to brain and kidney tissues, and increased the numbers of WBC, neutrophils, lymphocyte and monocytes, as well as the expression of IL-2, CRH and PCNA. It also decreased the expression of IL-1β, IL-6, CORT and ACTH as well as neuronal apoptosis. HQD exhibits protective effects against 12C6+ radiation-induced bystander effects. The underlying mechanism may involve the promotion of the production of peripheral blood cells, inhibition of inflammatory factors and apoptosis, and regulation of endocrine hormones.


La irradiación con haz de iones pesados 12C6+ puede provocar efectos secundarios. Las citoquinas inflamatorias, las hormonas endocrinas y las proteínas apoptóticas pueden estar involucradas en los efectos secundarios inducidos por la irradiación 12C6+. Este estudio caracterizó los efectos y mecanismos protectores de la decocción de Huangqi (HQD) contra los efectos externos inducidos por la radiación 12C6+. Las ratas Wistar se dividieron aleatoriamente en grupos control, modelo de irradiación de iones pesados 12C6+ y grupos de dosis alta/media/baja de HQD. La tinción con HE evaluó los cambios patológicos del cerebro y el riñón. Se detectaron indicadores químicos de sangre periférica, así como factores inflamatorios y hormonas endocrinas. La apoptosis se midió con TUNEL. La expresión del antígeno nuclear de células en proliferación (PCNA) se determinó mediante PCR en tiempo real y transferencia Western blot. La irradiación indujo daños patológicos en los tejidos cerebrales y renales. Después de la irradiación, disminuyó el número de glóbulos blancos (WBC) y monocitos, y la expresión de interleucina (IL)-2, hormona liberadora de corticotropina (CRH) y PCNA. El daño estuvo acompañado por una mayor expresión de IL-1β, IL-6, corticosterona (CORT) y hormona adrenocorticotrópica (ACTH), así como un aumento de la apoptosis neuronal. Estas alteraciones fueron indicativas de efectos inducidos por la radiación. La administración de HQD atenuó el daño patológico a los tejidos cerebrales y renales, y aumentó el número de leucocitos y monocitos, así como la expresión de IL-2, CRH y PCNA. También disminuyó la expresión de IL-1β, IL-6, CORT y ACTH, así como la apoptosis neuronal. HQD exhibe mecanismos protectores contra los efectos externos inducidos por la radiación 12C6+. El mecanismo subyacente puede implicar la promoción de la producción de células sanguíneas periféricas, la inhibición de factores inflamatorios y la apoptosis y la regulación de hormonas endocrinas.


Тема - темы
Animals , Female , Rats , Drugs, Chinese Herbal , Protective Agents/administration & dosage , Heavy Ions/adverse effects , Scutellaria baicalensis/chemistry , Brain/drug effects , Brain/radiation effects , Corticotropin-Releasing Hormone , Enzyme-Linked Immunosorbent Assay , Rats, Wistar , Apoptosis/drug effects , Apoptosis/radiation effects , Adrenocorticotropic Hormone , Proliferating Cell Nuclear Antigen , Endocrine System/drug effects , Endocrine System/radiation effects , Immunologic Factors/antagonists & inhibitors , Kidney/drug effects , Kidney/radiation effects
12.
Medwave ; 23(8): e2724, 29-09-2023. tab
Статья в английский, испанский | LILACS | ID: biblio-1511424

Реферат

El constructo de alto riesgo clínico de psicosis ha favorecido la investigación en la neurobiología de los estadios previos a la psicosis, así como también en intervenciones preventivas. Se trata de personas jóvenes que presentan síntomas psicóticos de menor intensidad o de menor frecuencia en un tiempo determinado, o bien tienen antecedentes genéticos de trastornos psicóticos sumados a un deterioro significativo del funcionamiento. Las escasas intervenciones existentes para esta población cuentan con un bajo nivel de evidencia. La actividad y el ejercicio físico han demostrado ser parte de la terapia de múltiples trastornos psiquiátricos, mientras que el sedentarismo sería un factor favorecedor de la psicosis. Efectivamente, las personas en alto riesgo clínico de psicosis presentan un peor estado físico asociado a mayor sedentarismo y hábitos de vida poco saludables. Se ha propuesto que el ejercicio genera un efecto biológico positivo sobre el hipocampo y las áreas circundantes, regiones que estarían involucradas en la fisiopatología de la psicosis. Algunos estudios experimentales han mostrado una disminución en la sintomatología psicótica en pacientes en alto riesgo clínico de psicosis que han seguido pautas de ejercicio físico. También dan cuenta de cambios morfofuncionales en estructuras cerebrales. Si bien existen barreras para la implementación de esta intervención, se trata de una intervención segura y factible. Es necesario realizar una mayor cantidad de estudios experimentales de una escala mayor para medir su eficacia, generando evidencia científica que permita eventualmente integrar el ejercicio físico a las guías de práctica clínica como una recomendación sistemática.


The concept of clinical high risk for psychosis has favored research in the neurobiology of the stages prior to psychosis, as well as in preventive interventions. This group is made up of young people with: (1) psychotic symptoms of less intensity or less frequency during a brief time or having genetic history of psychotic disorders associated to a significant deterioration in functioning. The few existing interventions for this population have a low level of evidence. Physical activity and exercise have been shown to be part of the therapy for multiple psychiatric disorders, while a sedentary lifestyle would be a factor that favors psychosis. Indeed, people in clinical high risk for psychosis present a worse physical condition associated with a greater sedentary lifestyle and unhealthy habits. It has been proposed that exercise generates a positive biological effect on the hippocampus and surrounding areas, regions that would be involved in the pathophysiology of psychosis. Some experimental studies have shown a decrease in psychotic symptoms in patients with clinical high risk for psychosis who have followed physical exercise guidelines, as well as morphofunctional changes in brain structures. Although there are barriers to the implementation of this intervention, it is safe and feasible. It is necessary to conduct a greater number of experimental studies on a larger scale to measure its efficacy, generating scientific evidence that will eventually allow physical exercise to be included in clinical practice guidelines as a systematic recommendation for clinical high risk for psychosis.


Тема - темы
Humans , Adolescent , Psychotic Disorders/therapy , Brain , Exercise , Sedentary Behavior
13.
Rev. méd. Chile ; 151(3): 387-391, mar. 2023. ilus
Статья в испанский | LILACS | ID: biblio-1530267

Реферат

Neurological manifestations such as polyneuropathy are reported in 8-49% of cases with Sjögren's Syndrome (SjS), but central nervous system involvement is seldom described. We report a 46-year-old woman with a history of SjS with distal renal tubular acidosis and autoimmune thyroiditis. She consulted in the emergency room for a five-days history of holocranial headache and explosive vomiting. Fundoscopy showed bilateral papilledema. Brain computed tomography (CT) without contrast showed diffuse encephalic edema, with effacement ofsulci and restriction ofperitruncal cisterns. Brain AngioCT ruled out thrombosis, and brain magnetic resonance (MRI) was without structural alterations or hydrocephalus. Lumbar puncture had increased cerebrospinal fluid output pressure but without cytochemical alterations, and negative gram, cultures and filmarray. The diagnosis of Intracranial Hypertension Syndrome (ICHTS) ofprobable autoimmune etiology in the context of SjS was proposed, and management with high-dose corticosteroids was initiated with favorable clinical and imaging response.


Тема - темы
Humans , Female , Middle Aged , Sjogren's Syndrome/complications , Sjogren's Syndrome/diagnosis , Intracranial Hypertension/etiology , Brain , Magnetic Resonance Imaging , Headache
14.
Arq. bras. oftalmol ; 86(1): 68-70, Jan.-Feb. 2023. tab, graf
Статья в английский | LILACS | ID: biblio-1403470

Реферат

ABSTRACT This case report describes the clinical characteristics and ophthalmic management of a patient who developed corneal perforation due to severe enophthalmos consistent with "silent brain syndrome." A 27-year-old man with a history of congenital hydrocephalus and ventriculoperitoneal shunt was referred with complaints of "sinking of the eyeballs" and progressively decreasing vision in the left eye. Examination revealed severe bilateral enophthalmos in addition to superonasal corneal perforation with iris prolapse in the left eye. The patient underwent therapeutic keratoplasty the next day. Orbital reconstruction with costochondral graft and shunt revision of the intracranial hypotension were performed the next month to prevent further progression.


RESUMO Este relato de caso descreve as características clínicas e o manejo cirúrgico de um paciente que teve perfuração da córnea devido à enoftalmia grave consistente com a "síndrome do cérebro silencioso". Um homem de 27 anos com história de hidrocefalia congênita e derivação ventrículo-peritoneal foi encaminhado com queixas de "afundamento dos globos oculares" e diminuição progressiva da visão no olho esquerdo. O exame revelou enoftalmo bilateral importante, além de perfuração superonasal da córnea com prolapso iriano no olho esquerdo. A paciente foi submetida à ceratoplastia terapêutica no dia seguinte. Foi realizado no mês seguinte a reconstrução da órbita com enxerto costocondral e revisão do shunt para evitar progressão e piora do caso.


Тема - темы
Humans , Adult , Corneal Perforation , Brain , Corneal Perforation/surgery , Corneal Perforation/etiology
15.
Arq. ciências saúde UNIPAR ; 27(1): 291-312, Jan-Abr. 2023.
Статья в португальский | LILACS | ID: biblio-1414871

Реферат

Esse trabalho busca relatar o processo de confecção de peças anatômicas para o ensino da anatomia humana a partir de material cadavérico fetal. Os discentes do curso de medicina da Universidade Federal do Paraná (UFPR) ­ Campus Toledo participaram do programa de voluntariado acadêmico e deram atenção especial aos aspectos técnicos do processo de dissecação, bem como a experiência subjetiva desse procedimento como ferramenta de aprendizado ativo. O procedimento foi realizado na sala de preparação de cadáver da UFPR ­ Campus Toledo, utilizando instrumental de dissecação e cadáveres humanos fetais com 20, 17 e 14 semanas de idade gestacional, direcionado de modo a expor as partes constituintes do sistema neural. Foram confeccionadas peças de cérebro, cerebelo, tronco encefálico, medula espinal, nervos espinais e suas estruturas associadas. Os voluntários envolvidos foram capazes de produzir material de estudo de qualidade através da dissecação e fortalecer seu conhecimento em anatomia humana e aptidão manual. Também foi dada atenção à importância e às limitações do processo de dissecação como estratégia de aprendizado em cursos da área de saúde. pôde ser observado que a dissecação pode fazer parte de uma formação completa e bem estruturada dos discentes, que por sua vez irão integrar a sociedade e a academia. Além disso, a exposição da topografia neural fetal pode servir de referencial para posteriores estudos que venham a utilizar essas informações.


This work aims to report the confection process of anatomic pieces for teaching human anatomy from fetal cadaveric material. The students of the medicine course of Universidade Federal do Paraná (UFPR) ­ Campus Toledo, took part in the academic volunteer program and paid special attention to the technical aspects of the dissection process, as well as the subjective experience of this procedure as an active learning tool. The procedure was performed at the cadaver preparation room of the UFPR ­ Campus Toledo, using dissection tools and human fetal corpses of 20, 17 and 14 weeks of gestational ages, directed so as to expose the constituent parts of the neural system. Pieces of the brain, cerebellum, brainstem, spinal cord, spinal nerves, and its associated structures were made. The involved voluntaries were able to produce quality study material through dissection, and strengthen their knowledge in human anatomy and manual skill. Attention was also given to the importance and limitations of the dissection process as a learning strategy in health courses. it was observed that dissection can be part of a complete and well-structured training of students, who in turn will integrate society and academia. In addition, the exposure of fetal neural topography can serve as a reference for further studies that use this information


Este trabajo tiene como objetivo relatar el proceso de confección de piezas anatómicas para la enseñanza de la anatomía humana a partir de material cadavérico fetal. Los alumnos del curso de medicina de la Universidade Federal do Paraná (UFPR) - Campus Toledo, participaron del programa de voluntariado académico y prestaron especial atención a los aspectos técnicos del proceso de disección, así como a la vivencia subjetiva de este procedimiento como herramienta de aprendizaje activo. El procedimiento fue realizado en la sala de preparación de cadáveres de la UFPR - Campus Toledo, utilizando herramientas de disección y cadáveres de fetos humanos de 20, 17 y 14 semanas de edad gestacional, dirigidos de forma a exponer las partes constitutivas del sistema neural. Se realizaron piezas del cerebro, cerebelo, tronco encefálico, médula espinal, nervios espinales y sus estructuras asociadas. Los voluntarios participantes pudieron elaborar material de estudio de calidad mediante la disección y reforzar sus conocimientos de anatomía humana y habilidad manual. También se prestó atención a la importancia y las limitaciones del proceso de disección como estrategia de aprendizaje en los cursos de salud. Se observó que la disección puede formar parte de una formación completa y bien estructurada de los estudiantes, que a su vez integrarán la sociedad y el mundo académico. Además, la exposición de la topografía neural fetal puede servir de referencia para estudios posteriores que utilicen esta información.


Тема - темы
Humans , Male , Female , Dissection/education , Fetus/anatomy & histology , Nervous System/anatomy & histology , Spinal Cord/anatomy & histology , Volunteers/education , Brain/anatomy & histology , Cerebellum/anatomy & histology , Dura Mater/anatomy & histology , Education, Medical, Undergraduate , Neuroanatomy
16.
Статья в Китайский | WPRIM | ID: wpr-970600

Реферат

This study compared the ameliorating effects of L-borneol, natural borneol, and synthetic borneol on the injury of different brain regions in the rat model of acute phase of cerebral ischemia/reperfusion(I/R) for the first time, which provides a reference for guiding the rational application of borneol in the early treatment of ischemic stroke and has important academic and application values. Healthy specific pathogen-free(SPF)-grade SD male rats were randomly assigned into 13 groups: a sham-operation group, a model group, a Tween model group, a positive drug(nimodipine) group, and high-, medium-, and low-dose(0.2, 0.1, and 0.05 g·kg~(-1), respectively) groups of L-borneol, natural borneol, and synthetic borneol according to body weight. After 3 days of pre-administration, the rat model of I/R was established by suture-occluded method and confirmed by laser speckle imaging. The corresponding agents in different groups were then administered for 1 day. The body temperature was monitored regularly before pre-administration, days 1, 2, and 3 of pre-administration, 2 h after model awakening, and 1 d after model establishment. Neurological function was evaluated based on Zea-Longa score and modified neurological severity score(mNSS) 2 h and next day after awakening. The rats were anesthetized 30 min after the last administration, and blood was collected from the abdominal aorta. Enzyme-linked immunoassay assay(ELISA) was employed to determine the serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-4, and transforming growth factor-beta1(TGF-β1). The brain tissues were stained with triphenyltetrazolium chloride(TTC) for the calculation of cerebral infarction rate, and hematoxylin-eosin(HE) staining was used for observing and semi-quantitatively evaluating the pathological damage in different brain regions. Immunohistochemistry was employed to detect the expression of ionized calcium binding adapter molecule 1(IBA1) in microglia. q-PCR was carried out to determine the mRNA levels of iNOS and arginase 1(Arg1), markers of polarization phenotype M1 and M2 in microglia. Compared with the sham-operation group, the model group and the Tween model group showed significantly elevated body temperature, Zea-Longa score, mNSS, and cerebral infarction rate, severely damaged cortex, hippocampus, and striatum, increased serum levels of IL-6 and TNF-α, and decreased serum levels of IL-4 and TGF-β1. The three borneol products had a tendency to reduce the body temperature of rats 1 day after modeling. Synthetic borneol at the doses of 0.2 and 0.05 g·kg~(-1), as well as L-borneol of 0.1 g·kg~(-1), significantly reduced Zea-Longa score and mNSS. The three borneol products at the dose of 0.2 g·kg~(-1) significantly reduced the cerebral infarction rate. L-borneol at the doses of 0.2 and 0.1 g·kg~(-1) and natural borneol at the dose of 0.1 g·kg~(-1) significantly reduced the pathological damage of the cortex. L-borneol and natural borneol at the dose of 0.1 g·kg~(-1) attenuated the pathological damage of hippocampus, and 0.2 g·kg~(-1) L-borneol attenuated the damage of striatum. The 0.2 g·kg~(-1) L-borneol and the three doses of natural borneol and synthetic borneol significantly reduced the serum level of TNF-α, and the 0.1 g·kg~(-1) synthetic borneol reduced the level of IL-6. L-borneol and synthetic borneol at the dose of 0.2 g·kg~(-1) significantly inhibited the activation of cortical microglia, and 0.2 g·kg~(-1) L-borneol up-regulated the expression of Arg1 and down-regulated the expression level of iNOS. In conclusion, the three borneol products may alleviate inflammation to ameliorate the pathological damage of brain regions of rats in the acute phase of I/R by inhibiting the activation of microglia and promoting the polarization of microglia from M1 type to M2 type. The protective effect on brain followed a trend of L-borneol > synthetic borneol > natural borneol. We suggest L-borneol the first choice for the treatment of I/R in the acute phase.


Тема - темы
Rats , Male , Animals , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-4/metabolism , Polysorbates , Brain , Brain Ischemia/metabolism , Reperfusion Injury/metabolism , Cerebral Infarction , Reperfusion
17.
Статья в Китайский | WPRIM | ID: wpr-970638

Реферат

In this study, the Web of Science and China National Knowledge Infrastructure(CNKI) were searched comprehensively for the literature about the research on Polygalae Radix. After manual screening, 1 207 Chinese articles and 263 English articles were included in this study. Excel was used to draw the line chart of the annual number of relevant publications. CiteSpace 6.1.R3 was used for the visual analysis of author cooperation, publishing institutions, keyword co-occurrence, keyword clustering, and bursts in the research on Polygalae Radix. The results showed that the number of articles published in Chinese and English increased linearly, which indicated the rising research popularity of Polygalae Radix. WANG J and LIU X were the authors publishing the most articles in Chinese and English, respectively. Shanxi University of Chinese Medicine and Chinese Academy of Medical Sciences were the research institutions with the largest number of Chinese and English publications in this field, respectively. The institutions publishing the relevant articles in English formed a system with the Chinese Academy of Medical Sciences as the core. According to the keywords, the research hotspots of Polygalae Radix included variety selection and breeding, quality standard, extraction and identification of active chemical components, prescription compatibility, processing, clinical medication rules, and pharmacological mechanism. The research frontiers were the molecular mechanisms of Polygalae Radix and its active components in exerting the protective effect on brain nerve, regulating receptor pathways, alleviating anxiety and Alzheimer's disease, as well as data mining and clinical medication summary. This study has reference significance for the topic selection and frontier identification of the future research on Polygalae Radix.


Тема - темы
Plant Breeding , China , Plant Roots/chemistry , Brain , Publications
18.
Статья в Китайский | WPRIM | ID: wpr-970667

Реферат

Existing neuroregulatory techniques can achieve precise stimulation of the whole brain or cortex, but high-focus deep brain stimulation has been a technical bottleneck in this field. In this paper, based on the theory of negative permeability emerged in recent years, a simulation model of magnetic replicator is established to study the distribution of the induced electric field in the deep brain and explore the possibility of deep focusing, which is compared with the traditional magnetic stimulation method. Simulation results show that a single magnetic replicator realized remote magnetic source. Under the condition of the same position and compared with the traditional method of stimulating, the former generated smaller induced electric field which sharply reduced with distance. By superposition of the magnetic field replicator, the induced electric field intensity could be increased and the focus could be improved, reducing the number of peripheral wires while guaranteeing good focus. The magnetic replicator model established in this paper provides a new idea for precise deep brain stimulation, which can be combined with neuroregulatory techniques in the future to lay a foundation for clinical application.


Тема - темы
Brain , Cerebral Cortex , Computer Simulation , Electricity , Magnetic Fields
19.
Статья в Китайский | WPRIM | ID: wpr-970668

Реферат

Weightlessness in the space environment affects astronauts' learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.


Тема - темы
Animals , Mice , Transcranial Magnetic Stimulation , Hindlimb Suspension , Neurons , Cognitive Dysfunction , Brain
20.
Статья в Китайский | WPRIM | ID: wpr-970680

Реферат

The extraction of neuroimaging features of migraine patients and the design of identification models are of great significance for the auxiliary diagnosis of related diseases. Compared with the commonly used image features, this study directly uses time-series signals to characterize the functional state of the brain in migraine patients and healthy controls, which can effectively utilize the temporal information and reduce the computational effort of classification model training. Firstly, Group Independent Component Analysis and Dictionary Learning were used to segment different brain areas for small-sample groups and then the regional average time-series signals were extracted. Next, the extracted time series were divided equally into multiple subseries to expand the model input sample. Finally, the time series were modeled using a bi-directional long-short term memory network to learn the pre-and-post temporal information within each time series to characterize the periodic brain state changes to improve the diagnostic accuracy of migraine. The results showed that the classification accuracy of migraine patients and healthy controls was 96.94%, the area under the curve was 0.98, and the computation time was relatively shorter. The experiments indicate that the method in this paper has strong applicability, and the combination of time-series feature extraction and bi-directional long-short term memory network model can be better used for the classification and diagnosis of migraine. This work provides a new idea for the lightweight diagnostic model based on small-sample neuroimaging data, and contributes to the exploration of the neural discrimination mechanism of related diseases.


Тема - темы
Humans , Time Factors , Migraine Disorders/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Neuroimaging
Критерии поиска