Your browser doesn't support javascript.
loading
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 371
Фильтр
Добавить фильтры








Годовой диапазон
1.
Neuroscience Bulletin ; (6): 65-78, 2024.
Статья в английский | WPRIM | ID: wpr-1010670

Реферат

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.


Тема - темы
Humans , Ischemic Stroke , Brain/metabolism , Macrophages , Brain Ischemia/metabolism , Microglia/metabolism , Gene Expression Profiling , Anti-Inflammatory Agents , Neuronal Plasticity/physiology , Infarction/metabolism
2.
Journal of Southern Medical University ; (12): 915-923, 2023.
Статья в Китайский | WPRIM | ID: wpr-987004

Реферат

OBJECTIVE@#To investigate the effect of acetylcorynoline (Ace) for promoting functional recovery of injured spinal cord in rats and explore the underlying mechanism.@*METHODS@#Rat models of spinal cord injury (SCI) were treated with intraperitoneal injection of different concentrations of Ace, with the sham-operated rats as the control group. After the treatment, the changes in motor function of the rats and the area of spinal cord injury were assessed with BBB score and HE staining, and the changes in pro-inflammatory cytokine levels and microglial activation were determined using PCR, ELISA and immunofluorescence staining. In a lipopolysaccharide (LPS)-treated BV2 cell model, the effects of different concentrations of Ace or DMSO on microglial activation and inflammatory cytokine production were observed. Network pharmacology analysis was performed to predict the target protein and signaling mechanism that mediated the inhibitory effect of Ace on microglia activation, and AutoDock software was used for molecular docking between Ace and the target protein. A signaling pathway blocker (Osimertinib) was used to verify the signaling mechanism in rat models of SCI and LPS-treated BV2 cell model.@*RESULTS@#In rat models of SCI, Ace treatment significantly increased the BBB score, reduced the area of spinal cord injury, and lowered the number of activated microglia cells and the levels of pro-inflammatory cytokines (P < 0.05). The cell experiments showed that Ace treatment significantly lower the level of cell activation and the production of inflammatory cytokines in LPS-treated BV2 cells (P < 0.05). Network pharmacology analysis suggested that EGFR was the main target of Ace, and they bound to each other via hydrogen bonds as shown by molecular docking. Western blotting confirmed that Ace inhibited the activation of the EGFR/MAPK signaling pathway in injured mouse spinal cord tissue and in LPS-treated BV2 cells, and its inhibitory effect was comparable to that of Osimertinib.@*CONCLUSION@#In rat models of SCI, treatment with Ace can inhibit microglia-mediated inflammatory response by regulating the EGFR/MAPK pathway, thus promoting tissue repair and motor function recovery.


Тема - темы
Mice , Animals , Rats , Recovery of Function , Lipopolysaccharides , Microglia , Molecular Docking Simulation , Spinal Cord Injuries , Signal Transduction , Cytokines , ErbB Receptors
3.
Acta Physiologica Sinica ; (6): 153-159, 2023.
Статья в Китайский | WPRIM | ID: wpr-980992

Реферат

This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.


Тема - темы
Animals , Mice , Chemokines, CXC/pharmacology , Hypoxia , Ligands , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Microglia/metabolism , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/pharmacology , RNA, Messenger/metabolism
4.
Chinese Medical Journal ; (24): 1291-1299, 2023.
Статья в английский | WPRIM | ID: wpr-980925

Реферат

Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.


Тема - темы
Humans , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Microglia/metabolism , Myeloid Cells/metabolism , Signal Transduction , Neuroinflammatory Diseases
5.
Chinese Journal of Biotechnology ; (12): 4234-4245, 2023.
Статья в Китайский | WPRIM | ID: wpr-1008023

Реферат

The aim of this study was to investigate the growth characteristics of primarily cultured astrocytes and microglia of different generations and then optimize the method for obtaining primary astrocytes and microglia effectively. Primarily cultured microglia were isolated and purified from the cortices of neonatal mice. The proliferation curve of mixed glia cells was measured by Cell Counting Kit-8 (CCK-8) assay, the proportion of astrocytes and microglia was detected by flow cytometry, and the polarization of the two types of glia cells was identified by immunofluorescence staining. Cell growth results showed that the mixed glia cells of P0 and P1 generation had the best proliferative activity; 97.3% of the high purity microglia could be obtained by mechanical shaking at 170 r/min for 30 min, and there was no significant difference in the morphology of ionized calcium-binding adapter molecule 1 (Iba-1) positive microglia and the proportion of M1 and M2 phenotype among the P0, P1 and P2 generations of microglia isolated by the above methods. Moreover, 95.7 % of the high purity astrocytes could be obtained by astrocyte cell surface antigen-2 (ACSA-2) magnetic beads separation, and there was no significant difference in the morphology of glial fibrillary acidic protein (GFAP) positive astrocyte and the proportion of A1 and A2 phenotype among the P0, P1 and P2 generations of astrocyte isolated by the above methods. Taken together, this study observed the growth characteristics of primarily cultured microglia and astrocyte in vitro, and then proved the best generations for purifying microglia and astrocytes. Finally, we optimized the methods of obtaining microglia and astrocyte, and verified that continuous culture within 2 generations will not affect the functional phenotypes of glia cells. These results provide technical support for studying the molecular mechanism of inflammation-associated diseases in nervous system.


Тема - темы
Mice , Animals , Astrocytes/metabolism , Microglia/metabolism , Cell Count , Flow Cytometry/methods , Cell Proliferation , Cells, Cultured
6.
Acta Physiologica Sinica ; (6): 569-574, 2023.
Статья в Китайский | WPRIM | ID: wpr-1007772

Реферат

Sleep is an extremely important physiological state to maintain human life. Sleep disorders can not only cause anxiety and depression, but also induce multi-system diseases that seriously affect brain function and physical health. The neuroinflammation is a key pathological process after sleep disorders, which can induce a series of nervous system diseases. In recent years, the role of microglia activation in neuroinflammation has been paid more and more attention and become a research hotspot in this field. The imbalance of the central microenvironment after sleep disorders leads to changes in the activation and polarization of microglia, which triggers neuroinflammatory response. The activation and polarization of microglia in the sleep disorders are regulated by multiple signaling pathways and complex molecular mechanisms. This paper summarizes five signaling pathways of microglia activation in central inflammation induced by sleep disorders, including P2X7 receptor (P2X7R), p38MAPK, Toll-like receptor 4 (TLR4)/NF-κB, JAK/STAT, and α7 nicotinic acetylcholine receptor (α7-nAChR) pathways, in order to provide reference for further research and clinical treatment targets selection of sleep disorders.


Тема - темы
Humans , Neuroinflammatory Diseases , Microglia/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , Inflammation/metabolism , Sleep Wake Disorders/metabolism
7.
Chinese Acupuncture & Moxibustion ; (12): 1050-1055, 2023.
Статья в Китайский | WPRIM | ID: wpr-1007441

Реферат

OBJECTIVE@#To observe the effects of electro-scalp acupuncture (ESA) on the expression of microglial markers CD206 and CD32, as well as interleukin (IL)-6, IL-1β, and IL-10 in the ischemic cortex of rats with ischemic stroke, and to explore the mechanisms of ESA on alleviating inflammatory damage of ischemic stroke.@*METHODS@#Sixty 7-week-old male SD rats were randomly selected, with 15 rats assigned to a sham surgery group. The remaining rats were treated with suture method to establish rat model of middle cerebral artery occlusion (MCAO). The rats with successful model were randomly divided into a model group, a VitD3 group, and an ESA group, with 15 rats in each group. In the ESA group, ESA was performed bilaterally at the "top-temporal anterior oblique line" with disperse-dense wave, a frequency of 2 Hz/100 Hz, and an intensity of 1 mA. Each session lasted for 30 min, once daily, for a total of 7 days. The VitD3 group were treated with intragastric administration of 1,25-dihydroxyvitamin D3 (1,25-VitD3) solution (3 ng/100 g), once daily for 7 days. The neurological deficit scores and neurobehavioral scores were assessed before and after the intervention. After the intervention, the brain infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Immunofluorescence double staining was performed to detect the protein expression of CD32 and CD206 in the ischemic cortex. Western blot analysis was conducted to measure the protein expression of IL-6, IL-1β, and IL-10 in the ischemic cortex.@*RESULTS@#Compared with the sham surgery group, the model group showed increased neurological deficit scores and neurobehavioral scores (P<0.01), increased brain infarct volume (P<0.01), increased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and decreased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the model group, both the ESA group and the VitD3 group showed decreased neurological deficit scores and neurobehavioral scores (P<0.01), reduced brain infarct volume (P<0.01), decreased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and increased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the VitD3 group, the ESA group had lower neurological deficit score (P<0.05), larger brain infarct volume (P< 0.05), and lower protein expression of CD32, CD206, IL-1β, and IL-10 in the ischemic cortex (P<0.01, P<0.05).@*CONCLUSION@#ESA could improve neurological function in MCAO rats, and its mechanism may be related to promoting microglial M1-to-M2 polarization and alleviating inflammatory damage.


Тема - темы
Male , Animals , Rats , Rats, Sprague-Dawley , Ischemic Stroke , Interleukin-10 , Interleukin-6/genetics , Microglia , Scalp , Acupuncture Therapy , Vitamins , Infarction, Middle Cerebral Artery
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 710-720, 2023.
Статья в английский | WPRIM | ID: wpr-1010983

Реферат

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Тема - темы
Humans , Mice , Rats , Animals , Aged , Middle Aged , Parkinson Disease/pathology , Astrocytes/pathology , Powders/therapeutic use , Ursidae/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/metabolism , Cyclooxygenase 2/metabolism , Lipopolysaccharides/pharmacology , Bile , Mice, Inbred C57BL , Microglia , Disease Models, Animal
9.
Protein & Cell ; (12): 726-742, 2023.
Статья в английский | WPRIM | ID: wpr-1010774

Реферат

Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.


Тема - темы
Humans , Gastrointestinal Microbiome , Irritable Bowel Syndrome/therapy , Microglia , Brain Diseases , Brain
10.
Neuroscience Bulletin ; (6): 1229-1245, 2023.
Статья в английский | WPRIM | ID: wpr-1010608

Реферат

Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.


Тема - темы
Mice , Animals , Hyperalgesia/metabolism , Microglia/metabolism , Disease Models, Animal , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Ganglia, Spinal/metabolism
11.
Journal of Zhejiang University. Medical sciences ; (6): 485-498, 2023.
Статья в английский | WPRIM | ID: wpr-1009910

Реферат

Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.


Тема - темы
Animals , Humans , MicroRNAs/genetics , Alzheimer Disease/prevention & control , Amyloid beta-Peptides , Apoptosis , Microglia
12.
China Journal of Chinese Materia Medica ; (24): 5863-5870, 2023.
Статья в Китайский | WPRIM | ID: wpr-1008784

Реферат

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 μmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 μmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 μmol·L~(-1) BAI significantly increased the SOD activity and 5 μmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1β, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Тема - темы
Humans , NF-kappa B/metabolism , Microglia , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Superoxide Dismutase/metabolism
13.
China Journal of Chinese Materia Medica ; (24): 4285-4294, 2023.
Статья в Китайский | WPRIM | ID: wpr-1008683

Реферат

Depression exists with high prevalence and heavy disease burden. Stress events play a key role in the occurrence of depression, but the pathological mechanism has not been fully clarified by reason of the complexity and heterogeneity. In recent years, neuroinflammation as a pathological mechanism of depression has received extensive attention. The activated microglia is regarded as the marker of neuroinflammation, which is an important link of stress-induced depression. Stress might induce microglia activation through pattern recognition receptors(PRR), intestinal flora, hypothalamic-pituitary-adrenal(HPA) axis, and other pathways. Cross-talk between impaired microglia function and neurobiological factors such as inflammatory cytokines, serotonin metabolism, and neuroplasticity may lead to depression. At present, a large number of studies have proved that traditional Chinese medicine(TCM) plays an anti-depressive role by inhibiting microglia activation, which may be potential treatment strategies for depressive disorder. This paper reviewed the research progress of stress-induced microglia activation in depression and summarized the mechanism of TCM against depression with regard to microglia, hoping to provide experimental evidence and consideration for TCM against depression through microglia.


Тема - темы
Humans , Cytokines/metabolism , Depression/drug therapy , Medicine, Chinese Traditional , Microglia/metabolism , Neuroinflammatory Diseases
14.
China Journal of Chinese Materia Medica ; (24): 4201-4207, 2023.
Статья в Китайский | WPRIM | ID: wpr-1008616

Реферат

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Тема - темы
Female , Rats , Mice , Animals , Bilobalides/pharmacology , Neuroprotection , Lipopolysaccharides/toxicity , Culture Media, Conditioned/pharmacology , Mice, Inbred C57BL , Macrophages/metabolism , Microglia , Cytokines/metabolism , Nerve Growth Factors/pharmacology , Inflammation/metabolism
15.
China Journal of Chinese Materia Medica ; (24): 4027-4038, 2023.
Статья в Китайский | WPRIM | ID: wpr-1008598

Реферат

The effect and mechanism of Heixiaoyao Powder on the polarization of microglia(MG) in APP/PS1 double transgenic mice were explored based on NADPH oxidase 2(NOX2)/reactive oxygen species(ROS)/nuclear factor kappaB(NF-κB) signaling pathway. Fifty 4-month-old male APP/PS1 mice were randomly divided into a model group, an MCC950 group(10 mg·kg~(-1)), and low-, medium-, and high-dose Heixiaoyao Powder groups(6.45, 12.89, and 25.78 g·kg~(-1)). Thirty male C57BL/6J mice of the same age and strain were randomly divided into a blank group, a blank + intragastric intervention group, and a blank + intraperitoneal injection group. Drug intervention lasted 90 days. Morris water maze test was used to detect learning and cognitive ability. Nissl staining and transmission electron microscopy were used to observe the pathological morphology and ultrastructure of hippocampal neurons. Immunofluorescence was used to detect the positive expression of M1-type marker CD16/32~+/Iba-1~+, M2-type marker CD206~+/Iba-1~+ of MG and the expression of hippocampal ROS. The colorimetric method was used to detect the content of malondialdehyde(MDA) and superoxide dismutase(SOD) in the hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory factors, including interleukin-6(IL-6), interleukin-8(IL-8), and tumor necrosis factor-α(TNF-α), in the hippocampus. Western blot was used to detect the protein expression of β-amyloid protein(Aβ), Iba-1, CD16/32, CD206, NOX2, NF-κB, p-NF-κB, NF-κB inhibitor alpha(IκBα), and p-IKBα in the hippocampus. The results showed that as compared with the blank group, the model group showed prolonged target quadrant movement distance and escape latency(P<0.01), shortened target quadrant retention time and percentage(P<0.01), disorganized neuronal cells with swelling, nuclear disappearance or bias, reduced number of cells, dissolved or absent Nissl bodies, and a clear area in the cytoplasm, damaged and shrunk cell membrane with abnormal cell morphology, few organelles in the cytoplasm, reduced and swollen mitochondria, increased MG M1-type marker CD16/32~+/Iba-1~+(P<0.01), decreased M2-type marker CD206~+/Iba-1~+(P<0.01), increased ROS activity and MDA content(P<0.01), decreased SOD level(P<0.01), elevated inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), up-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and down-regulated CD206(P<0.01). There was no statistically significant difference between the blank group, the blank + intragastric intervention group, and the blank + intraperitoneal injection group. After the intervention of Heixiaoyao Powder, the Heixiaoyao Powder groups showed shortened target quadrant movement distance and escape latency(P<0.01), prolonged target quadrant retention time and percentage(P<0.01), increased and neatly arranged cells with relieved swelling, increased Nissl bodies, regular cell morphology, and intact cell membrane, relieved swelling of mitochondria, slightly expanded endoplasmic reticulum, decreased CD16/32~+/Iba-1~+(P<0.05 or P<0.01), increased CD206~+/Iba-1~+(P<0.01), decreased ROS activity and MDA content(P<0.01), increased SOD level(P<0.01), decreased content of inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), down-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and up-regulated CD206(P<0.01). In conclusion, Heixiaoyao Powder can alleviate neuronal damage and improve the learning and memory abilities of APP/PS1 mice. The mechanism of action may be related to the inhibition of NOX2/ROS/NF-κB signaling pathway, regulating the polarization of MG, increasing the expression of M2 type, inhibiting the expression of M1 type, and reducing the release of inflammatory factor.


Тема - темы
Mice , Male , Animals , NF-kappa B/genetics , Microglia , Reactive Oxygen Species , Interleukin-8 , Powders , Tumor Necrosis Factor-alpha , Interleukin-6 , Mice, Inbred C57BL , Signal Transduction , Mice, Transgenic , Superoxide Dismutase
16.
Neuroscience Bulletin ; (6): 491-502, 2023.
Статья в английский | WPRIM | ID: wpr-971583

Реферат

As prominent immune cells in the central nervous system, microglia constantly monitor the environment and provide neuronal protection, which are important functions for maintaining brain homeostasis. In the diseased brain, microglia are crucial mediators of neuroinflammation that regulates a broad spectrum of cellular responses. In this review, we summarize current knowledge on the multifunctional contributions of microglia to homeostasis and their involvement in neurodegeneration. We further provide a comprehensive overview of therapeutic interventions targeting microglia in neurodegenerative diseases. Notably, we propose microglial depletion and subsequent repopulation as promising replacement therapy. Although microglial replacement therapy is still in its infancy, it will likely be a trend in the development of treatments for neurodegenerative diseases due to its versatility and selectivity.


Тема - темы
Humans , Microglia/physiology , Central Nervous System , Neurodegenerative Diseases/therapy , Brain/physiology , Homeostasis
17.
Neuroscience Bulletin ; (6): 531-540, 2023.
Статья в английский | WPRIM | ID: wpr-971577

Реферат

Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.


Тема - темы
Animals , Neuroglia/physiology , Neurons/physiology , Astrocytes , Microglia/physiology , Oligodendroglia , Mammals
18.
Neuroscience Bulletin ; (6): 393-408, 2023.
Статья в английский | WPRIM | ID: wpr-971565

Реферат

Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.


Тема - темы
Humans , Glioma/metabolism , Neuroglia/metabolism , Carcinogenesis/pathology , Neural Stem Cells/metabolism , Microglia/metabolism , Brain Neoplasms/metabolism , Tumor Microenvironment
19.
Neuroscience Bulletin ; (6): 379-392, 2023.
Статья в английский | WPRIM | ID: wpr-971559

Реферат

Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.


Тема - темы
Neuroglia/metabolism , Central Nervous System , Oligodendroglia/metabolism , Astrocytes/metabolism , Microglia
20.
Neuroscience Bulletin ; (6): 368-378, 2023.
Статья в английский | WPRIM | ID: wpr-971552

Реферат

Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.


Тема - темы
Humans , Optogenetics , Brain/physiology , Microglia , Chronic Pain/therapy , Neurons/physiology
Критерии поиска