Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 2 de 2
过滤器
添加過濾器








年份範圍
1.
文章 在 英语 | WPRIM | ID: wpr-1030863

摘要

Background@#Response surface methodology (RSM) is a cost-effective multivariate technique employed in optimization of pharmaceutical formulations. Central composite experiment design is one of the common designs under RSM used for determining optimum nanoparticle formulation parameters.@*Objectives@#To optimize a formulation for meropenem-loaded chitosan alginate nanoparticles using central composite experimental design.@*Methodology@#Meropenem loaded chitosan-alginate nanoparticles were fabricated using aqueous sodium alginate solution and ionotropic gelation with calcium chloride and chitosan, using an optimized formulation derived from a central composite design. The fabricated Mer-CS/Alg NPs were characterized for their particle size, zeta potential, encapsulation efficiency, and loading capacity. The central composite design has been used to adequately assess the influence of two factors namely meropenem concentration and Alg/CS mass ratio on the responses based on a limited number of 13 triplicate formulation runs.@*Results@#This study successfully formulated meropenem-loaded chitosan/alginate nanoparticles. The optimal formulation of the Mer- CS/Alg NPs was 1.7 mg/mLcurcumin, and a Alg/CS mass ratio of 9.8:1. Based on the predicted values of the response variable, the optimal formulation would have a particle size of 490.64 nm, zeta potential of -28.59 mVand a loading capacity of 76.89%.@*Conclusion@#The central composite experimental design successfully optimized the nanoparticle formulation of meropenem and chitosan/alginate polymer solution. The optimum formulation produced nanoparticles with adequate size, high stability, and high drug load.


Subject(s)
Meropenem , Nanoparticles , Research Design
2.
Acta Medica Philippina ; : 108-124, 2024.
文章 在 英语 | WPRIM | ID: wpr-1031363

摘要

Background and Objectives@#Type 2 diabetes mellitus (T2DM) is a global health concern affecting more than 400 million people worldwide. Diabetic neuropathy, nephropathy, retinopathy, and cardiovascular complications lead to debilitating effects to patients. To prevent these, the treatment goal is to lower the blood sugar levels and maintain at a normal range which is achieved through conventional treatments like insulin and oral hypoglycemic agents. However, the high cost of these medications implicates patient treatment outcomes. Hence, alternatives are sought for including the use of herbal medicines. Momordica charantia (MC) and Lagerstroemia speciosa (LS) are common herbal medicines used to manage T2DM. In the Philippines, these herbal preparations are validated for their glucose lowering effects and are commonly found in combination in food supplements. The study aims to screen the possible mechanisms of compounds present in these herbal medicines which can offer possible explanations for their synergistic effects and rationalization of their combination in preparations.@*Methods@#Network pharmacology was employed to determine pivotal proteins that are targeted by MC and LS compounds. Molecular docking was then done to evaluate the favorability of the binding of these compounds toward their target proteins.@*Results@#Our results showed that TNF, HSP90AA1, MAPK3, ALDH2, GCK, AKR1B1, TTR and RBP4 are the possible pivotal targets of MC and LS compounds in T2DM.@*Conclusion@#Terpenoids from MC and decanoic acid from LS are the compounds which showed favorable binding towards pivotal protein targets in T2DM. By binding towards the different key proteins in T2DM, they may exhibit their synergistic effects. However, the results of this study are bound to the limitations of computational methods and experimental validation are needed to verify our findings.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Momordica charantia
搜索明细