Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 1 de 1
过滤器
添加過濾器








年份範圍
1.
Chinese Journal of Epidemiology ; (12): 1465-1471, 2018.
文章 在 中文 | WPRIM | ID: wpr-738169

摘要

Objective: To understand the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) as well as the disease risk of influenza virus A H7N9 in Guizhou province. Methods: RNAs were extracted and sequenced from HA and NA genes of H7N9 virus strains obtained from 18 cases of human infection with H7N9 virus and 6 environmental swabs in Guizhou province during 2014-2017. Then the variation and the genetic evolution of the virus were analyzed by using a series of bioinformatics software package. Results: Homology analysis of HA and NA genes revealed that 2 strains detected during 2014-2015 shared 98.8%-99.2% and 99.2% similarities with vaccine strains A/Shanghai/2/2013 and A/Anhui/1/2013 recommended by WHO, respectively. Two strains detected in 2016 and 14 strains detected in 2017 shared 98.2%-99.3% and 97.6%-98.8% similarities with vaccine strain A/Hunan/02650/2016, respectively. Other 6 stains detected in 2017 shared 99.1%-99.4% and 98.9%-99.3% similarities with strain A/Guangdong/17SF003/2016, respectively. Phylogenetic analysis showed that all the strains were directly evolved in the Yangtze River Delta evolution branch, but they were derived from different small branch. PEVPKRKRTAR↓GLF was found in 6 of 24 strains cleavage site sequences of HA protein, indicating the characteristic of highly pathogenic avian influenza virus. Mutations A134V, G186V and Q226L at the receptor binding sites were found in the HA. All the strains had a stalk deletion of 5 amino acid residue "QISNT" in NA protein, and drug resistance mutation R294K occurred in strain A/Guizhou-Danzhai/18980/2017. In addition, potential glycosylation motifs mutations NCS42NCT were found in the NA of 9 of 24 strains. Conclusions: HA and NA genes of avian influenza A (H7N9) virus showed genetic divergence in Guizhou province during 2014-2017. The mutations of key sites might enhance the virulence of the virus, human beings are more susceptible to it. Hence, the risk of infection is increasing.


Subject(s)
Animals , Humans , Base Sequence , Birds , China/epidemiology , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza in Birds , Influenza, Human/virology , Neuraminidase/genetics , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA
搜索明细