Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 2 de 2
过滤器
添加過濾器








年份範圍
1.
文章 在 英语 | WPRIM | ID: wpr-1042732

摘要

Background@#Recently, deep learning techniques have been used in medical imaging studies. We present an algorithm that measures radiologic parameters of distal radius fractures using a deep learning technique and compares the predicted parameters with those measured by an orthopedic hand surgeon. @*Methods@#We collected anteroposterior (AP) and lateral X-ray images of 634 wrists in 624 patients with distal radius fractures treated conservatively with a follow-up of at least 2 months. We allocated 507 AP and 507 lateral images to the training set (80% of the images were used to train the model, and 20% were utilized for validation) and 127 AP and 127 lateral images to the test set. The margins of the radius and ulna were annotated for ground truth, and the scaphoid in the lateral views was annotated in the box configuration to determine the volar side of the images. Radius segmentation was performed using attention U-Net, and the volar/dorsal side was identified using a detection and classification model based on RetinaNet. The proposed algorithm measures the radial inclination, dorsal or volar tilt, and radial height by index axes and points from the segmented radius and ulna. @*Results@#The segmentation model for the radius exhibited an accuracy of 99.98% and a Dice similarity coefficient (DSC) of 98.07% for AP images, and an accuracy of 99.75% and a DSC of 94.84% for lateral images. The segmentation model for the ulna showed an accuracy of 99.84% and a DSC of 96.48%. Based on the comparison of the radial inclinations measured by the algorithm and the manual method, the Pearson correlation coefficient was 0.952, and the intraclass correlation coefficient was 0.975. For dorsal/ volar tilt, the correlation coefficient was 0.940, and the intraclass correlation coefficient was 0.968. For radial height, it was 0.768 and 0.868, respectively. @*Conclusions@#The deep learning-based algorithm demonstrated excellent segmentation of the distal radius and ulna in AP and lateral radiographs of the wrist with distal radius fractures and afforded automatic measurements of radiologic parameters.

2.
文章 在 英语 | WPRIM | ID: wpr-1044586

摘要

Purpose@#The aim of this study was to demonstrate the effectiveness of a machine learning-based radiomics model for distinguishing tumor response and overall survival in patients with unresectable colorectal liver metastases (CRLM) treated with targeted biological therapy. @*Methods@#We prospectively recruited 17 patients with unresectable liver metastases of colorectal cancer, who had been given targeted biological therapy as the first line of treatment. All patients underwent liver magnetic resonance imaging (MRI) three times up until 8 weeks after chemotherapy. We evaluated the diagnostic performance of machine learning-based radiomics model in tumor response of liver MRI compared with the guidelines for the Response Evaluation Criteria in Solid Tumors. Overall survival was evaluated using the Kaplan-Meier analysis and compared to the Cox proportional hazard ratios following univariate and multivariate analyses. @*Results@#Performance measurement of the trained model through metrics showed the accuracy of the machine learning model to be 76.5%, and the area under the receiver operating characteristic curve was 0.857 (95% confidence interval [CI], 0.605–0.976; P < 0.001). For the patients classified as non-progressing or progressing by the radiomics model, the median overall survival was 17.5 months (95% CI, 12.8–22.2), and 14.8 months (95% CI, 14.2–15.4), respectively (P = 0.431, log-rank test). @*Conclusion@#Machine learning-based radiomics models could have the potential to predict tumor response in patients with unresectable CRLM treated with biologic therapy.

搜索明细