Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 1 de 1
过滤器
添加過濾器








年份範圍
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(8): 698-704, Aug. 2010. ilus
文章 在 英语 | LILACS | ID: lil-554963

摘要

The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.


Subject(s)
Amino Acids/metabolism , Indenes/metabolism , Solanum lycopersicum/physiology , Plant Leaves/physiology , Plant Stomata/physiology , Pseudomonas syringae/pathogenicity , Virulence Factors/physiology , Amino Acids/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Leaves/microbiology , Plant Stomata/microbiology , Pseudomonas syringae/genetics , Virulence Factors/genetics
搜索明细