Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 2 de 2
过滤器
1.
文章 在 英语 | WPRIM | ID: wpr-787133

摘要

In vascular smooth muscle, K⁺ channels, such as voltage-gated K⁺ channels (Kv), inward-rectifier K⁺ channels (Kir), and big-conductance Ca²⁺-activated K⁺ channels (BK(Ca)), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (I(Kv) and I(Kir)) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) I(Kv) was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) I(Kv) inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) I(Kir) was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) I(BKCa) did not differ between branches. Moreover, in PAH rats, I(Kir) and I(Kv) decreased in SCSMCs, but not in RCSMCs or LCSMCs, and I(BKCa) did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in I(Kv) and I(Kir) occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller I(Kir) in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K⁺ concentration under increased activity of the myocardium.


Subject(s)
Animals , Rats , Coronary Vessels , Heart Diseases , Heart Failure , Hyperemia , Hypertension , Hypertrophy, Right Ventricular , Ischemia , Membrane Potentials , Monocrotaline , Muscle, Smooth , Muscle, Smooth, Vascular , Myocardium , Myocytes, Smooth Muscle , Patch-Clamp Techniques , Potassium Channels , Septum of Brain
2.
文章 在 英语 | WPRIM | ID: wpr-727997

摘要

Ion channels in carcinoma and their roles in cell proliferation are drawing attention. Intracellular Ca2+ ([Ca2+]i)-dependent signaling affects the fate of cancer cells. Here we investigate the role of Ca(2+)-activated K+ channel (SK4) in head and neck squamous cell carcinoma cells (HNSCCs) of different cell lines; SNU-1076, OSC-19 and HN5. Treatment with 1 microM ionomycin induced cell death in all the three cell lines. Whole-cell patch clamp study suggested common expressions of Ca(2+)-activated Cl- channels (Ano-1) and Ca(2+)-activated nonselective cation channels (CAN). 1-EBIO, an activator of SK4, induced outward K+ current (ISK4) in SNU-1076 and OSC-19. In HN5, ISK4 was not observed or negligible. The 1-EBIO-induced current was abolished by TRAM-34, a selective SK4 blocker. Interestingly, the ionomycin-induced cell death was effectively prevented by 1-EBIO in SNU-1076 and OSC-19, and the rescue effect was annihilated by combined TRAM-34. Consistent with the lower level of ISK4, the rescue by 1-EBIO was least effective in HN5. The results newly demonstrate the role of SK4 in the fate of HNSCCs under the Ca2+ overloaded condition. Pharmacological modulation of SK4 might provide an intriguing novel tool for the anti-cancer strategy in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Cell Death , Cell Line , Cell Proliferation , Head , Ion Channels , Ionomycin , Neck , Neoplasms, Squamous Cell
搜索明细