Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 8 de 8
过滤器
添加過濾器








年份範圍
1.
文章 | WPRIM | ID: wpr-831613

摘要

Background@#Endoscopy is used for diagnosing and treating various digestive diseases in children as well as in adults. However, in pediatric patients, it is recommended that sufficient sedation should be ensured before conducting endoscopy, since insufficient sedation may cause serious complications. However, in Korea, no studies have yet described the types of sedation drugs, effects of sedation, and efficiency of endoscopy with respect to the sedation instructor. Thus, we investigated the effectiveness of sedative procedures performed by anesthesiologists. @*Methods@#We retrospectively reviewed the medical records of patients aged < 18 years who underwent endoscopy during March 2014–July 2019. Data of sedation instructors, sedation drugs and their doses, complications, and the recovery after sedation were evaluated. @*Results@#Of 257 patients, 217 underwent esophagogastroduodenoscopy (EGD) and 40 underwent colonoscopies. Before EGD, 29 patients (13.4%) underwent sedation by the pediatric endoscopist and 188 (86.6%) were sedated by the anesthesiologist. The anesthesiologist performed the sedation for all 40 patients who underwent colonoscopy. Endoscopic examinations performed by the anesthesiologist were relatively more time-consuming (401.0 ± 135.1 seconds vs. 274.9 ± 106.1 seconds, P < 0.001). We observed that in patients who underwent EGD, there was a difference in the dose of midazolam administered (P = 0.000). When comparing EGD and colonoscopy in patients undergoing sedation by the anesthesiologist, there were no significant differences in the doses of midazolam and ketamine, but the dose of propofol increased for colonoscopy (2.50 ± 0.95 mg/kg vs. 4.71 ± 1.66 mg/kg, P = 0.000). The cognitive recovery time according to drug dose was associated with propofol only in EGD with a shorter endoscopy time. The longer cognitive recovery time in colonoscopy and the discharge time of EGD and colonoscopies were not associated with propofol use. @*Conclusion@#When sedation is performed by an anesthesiologist, various drugs are used with sufficient doses and complications are reduced, but the discharge time does not change. For performing pediatric endoscopy in Korea, anesthesiologists should be considered for inducing anesthesia.

2.
文章 在 英语 | WPRIM | ID: wpr-717991

摘要

Benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea are commonly used preservatives in cosmetics. Recent reports suggested that these compounds may have cellular and systemic toxicity in high concentration. In addition, diazolidinyl urea and imidazolidinyl urea are known formaldehyde (FA) releasers, raising concerns for these cosmetic preservatives. In this study, we investigated the effects of benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea on ROS-dependent apoptosis of rat neural progenitor cells (NPCs) in vitro. Cells were isolated and cultured from embryonic day 14 rat cortices. Cultured cells were treated with 1–1,000 nM benzalkonium chloride, and 1–50 μM diazolidinyl urea or imidazolidinyl urea at various time points to measure the reactive oxygen species (ROS). PI staining, MTT assay, and live-cell imaging were used for cell viability measurements. Western blot was carried out for cleaved caspase-3 and cleaved caspase-8 as apoptotic protein markers. In rat NPCs, ROS production and cleaved caspase-8 expression were increased while the cell viability was decreased in high concentrations of these substances. These results suggest that several cosmetic preservatives at high concentrations can induce neural toxicity in rat brains through ROS induction and apoptosis.


Subject(s)
Animals , Rats , Apoptosis , Benzalkonium Compounds , Blotting, Western , Brain , Caspase 3 , Caspase 8 , Cell Survival , Cells, Cultured , Formaldehyde , In Vitro Techniques , Reactive Oxygen Species , Stem Cells , Urea
3.
文章 在 英语 | WPRIM | ID: wpr-129208

摘要

Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.


Subject(s)
Animals , Female , Humans , Male , Mice , Anxiety , Autism Spectrum Disorder , Brain , Mice, Transgenic , Models, Animal , N-Methylaspartate , Phenotype , Prefrontal Cortex , Receptors, AMPA , Sex Characteristics , Synapses , Telomerase
4.
文章 在 英语 | WPRIM | ID: wpr-129193

摘要

Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.


Subject(s)
Animals , Female , Humans , Male , Mice , Anxiety , Autism Spectrum Disorder , Brain , Mice, Transgenic , Models, Animal , N-Methylaspartate , Phenotype , Prefrontal Cortex , Receptors, AMPA , Sex Characteristics , Synapses , Telomerase
5.
文章 在 英语 | WPRIM | ID: wpr-20732

摘要

Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 muM to 50 muM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 muM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation.


Subject(s)
Animals , Humans , Rats , Apoptosis , Brain , Caspase 3 , Cell Survival , Embryonic Structures , Glutathione , Household Products , Mouthwashes , Neural Stem Cells , Soaps , Toothpastes , Triclosan
6.
文章 在 英语 | WPRIM | ID: wpr-178037

摘要

Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.


Subject(s)
Animals , Humans , Male , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Anesthesia , Anxiety , Avoidance Learning , Blotting, Western , Body Weight , Injections, Intraperitoneal , Interpersonal Relations , Learning , Memory , Motor Activity , N-Methylaspartate , Propofol , Weight Gain
7.
文章 在 英语 | WPRIM | ID: wpr-145966

摘要

A substantial proportion of patients with autism spectrum disorder (ASD) display hyperactivity as a comorbid symptom. Exposure to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.


Subject(s)
Animals , Child , Humans , Pregnancy , Rats , Acetylation , Autistic Disorder , Autism Spectrum Disorder , Chromatin Immunoprecipitation , Dopamine , Epigenomics , Histone Deacetylase Inhibitors , Histones , Methylphenidate , Models, Animal , Norepinephrine , Norepinephrine Plasma Membrane Transport Proteins , Phenotype , Prefrontal Cortex , RNA, Messenger , Valproic Acid , Atomoxetine Hydrochloride
8.
Toxicological Research ; : 173-179, 2013.
文章 在 英语 | WPRIM | ID: wpr-193677

摘要

In-utero exposure to valproic acid (VPA) has been known as a potent inducer of autism spectrum disorder (ASD), not only in humans, but also in animals. In addition to the defects in communication and social interaction as well as repetitive behaviors, ASD patients usually suffer from gastrointestinal (GI) problems. However, the exact mechanism underlying these disorders is not known. In this study, we examined the gross GI tract structure and GI motility in a VPA animal model of ASD. On embryonic day 12 (E12), 4 pregnant Sprague-Dawley (SD) rats were subcutaneously injected with VPA (400 mg/kg) in the treatment group, and with phosphate buffered saline (PBS) in the control group; the resulting male offspring were analyzed at 4 weeks of age. VPA exposure decreased the thickness of tunica mucosa and tunica muscularis in the stomach and ileum. Other regions such as duodenum, jejunum, and colon did not show a significant difference. In high-resolution microscopic observation, atrophy of the parietal and chief cells in the stomach and absorptive cells in the ileum was observed. In addition, decreased staining of the epithelial cells was observed in the hematoxylin and eosin (H&E)-stained ileum section. Furthermore, decreased motility in GI tract was also observed in rat offspring prenatally exposed to VPA. However, the mechanism underlying GI tract defects in VPA animal model as well as the association between abnormal GI structure and function with ASD is yet to be clearly understood. Nevertheless, the results from the present study suggest that this VPA ASD model undergoes abnormal changes in the GI structure and function, which in turn could provide beneficial clues pertaining to the pathophysiological relevance of GI complications and ASD phenotypes.


Subject(s)
Animals , Child , Humans , Male , Rats , Atrophy , Autism Spectrum Disorder , Colon , Duodenum , Eosine Yellowish-(YS) , Epithelial Cells , Gastrointestinal Tract , Hematoxylin , Ileum , Interpersonal Relations , Jejunum , Models, Animal , Mucous Membrane , Phenotype , Stomach , Valproic Acid
搜索明细