Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 2 de 2
过滤器
1.
文章 在 英语 | WPRIM | ID: wpr-131297

摘要

Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21(Cip/WAF1) activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21(Cip/WAF1) short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.


Subject(s)
Animals , Mice , Arginine , Cell Dedifferentiation , Cyclin-Dependent Kinase Inhibitor p21/genetics , Elongation Factor 2 Kinase/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Flavonoids/pharmacology , MAP Kinase Signaling System/drug effects , Methylation , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Myofibroblasts/pathology , NIH 3T3 Cells , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering/genetics
2.
文章 在 英语 | WPRIM | ID: wpr-131300

摘要

Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21(Cip/WAF1) activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21(Cip/WAF1) short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.


Subject(s)
Animals , Mice , Arginine , Cell Dedifferentiation , Cyclin-Dependent Kinase Inhibitor p21/genetics , Elongation Factor 2 Kinase/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Flavonoids/pharmacology , MAP Kinase Signaling System/drug effects , Methylation , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Myofibroblasts/pathology , NIH 3T3 Cells , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering/genetics
搜索明细