Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 20 de 776
过滤器
1.
文章 在 英语 | WPRIM | ID: wpr-1011012

摘要

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Subject(s)
Mice , Rats , Animals , Myeloid Differentiation Factor 88/metabolism , Vascular Remodeling , Cell Proliferation , Vascular System Injuries/pathology , Carotid Artery Injuries/pathology , Molecular Docking Simulation , Muscle, Smooth, Vascular , Cell Movement , Mice, Inbred C57BL , Signal Transduction , Succinates/pharmacology , Potassium/pharmacology , Cells, Cultured , Diterpenes , Cadherins
2.
文章 在 中文 | WPRIM | ID: wpr-1009473

摘要

Objective To establish U251 cells with inhibited expression of interferon-γ inducible protein 30 (IFI30), and to investigate the effect of IFI30 on cell biological function as well as its underlying mechanism. Methods Three knockdown sequences which target IFI30 were designed online and 3 small interfering RNAs (siRNA) were synthesized. After transfection, the inhibition efficiency was detected by real-time quantitative PCR. The siRNA sequence with the highest inhibition efficiency was selected to create short hairpin RNA (shRNA) plasmids. The recombinant plasmids and packaging plasmids were co-transfected into HEK293T cells to prepare lentivirus. The glioma U251 cells were transfected with lentivirus, and the positive cells were screened by puromycin. CCK-8 assay, 5-ethyl-2'-deoxyuridine (EdU) and colony formation assays were used to analyze cell proliferation; the flow cytometry was used to analyze cell cycle and apoptosis; the TranswellTM assay was used to detect cell invasion; the wound-healing assay was employed to detect cell migration, and western blot analysis to detect the protein expresison of cyclin D1, B-cell lymphoma factor 2 (Bcl2), epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), signal transducer and activator of transcription 1 (STAT1). Results The sequence which effectively target IFI30 was screened and U251 cell line capable of inhibiting the IFI30 expression was successfully established. When IFI30 expression was knocked down, the proliferation of U251 cells was inhibited, along with increased ratio of cells in the phase G0/G1, the decreased phase S, the increased rate of cell apoptosis. The cell invasion and migration capabilities was also reduced. The decreased expression of cyclin D1, Bcl2 and N-cadherin were observed in U251 cells, and the expression of E-cadherin and the phosphorylation of STAT1 were found increased. Conclusion Knockdown of IFI30 inhibits the proliferation, invasion and migration of human glioma cell U251 and promotes its apoptosis by activating STAT1.


Subject(s)
Humans , Cyclin D1/genetics , HEK293 Cells , Interferon-gamma , RNA, Small Interfering , Apoptosis/genetics , Cadherins , Cell Proliferation/genetics , Glioma/genetics , Proto-Oncogene Proteins c-bcl-2 , Oxidoreductases Acting on Sulfur Group Donors , STAT1 Transcription Factor/genetics
3.
Natal; s.n; 24 ago. 2023. 134 p. ilus, tab.
学位论文 在 葡萄牙语 | LILACS, BBO | ID: biblio-1532149

摘要

As lesões odontogênicas epiteliais benignas constituem um grupo heterogêneo de lesões. A proteína CLIC4 atua na regulação dos processos de parada de crescimento e apoptose, participando também do processo de transdiferenciação dos fibroblastos em miofibroblastos que passam a expressar α-SMA. Além disso, a expressão de CLIC4 pode interferir no processo de transição epitélio-mesenquima (TEM) em neoplasias. Este trabalho avaliou a imunoexpressão de CLIC4, α-SMA, E-caderina e Vimentina em ameloblastomas (AM) (n = 16), ceratocistos odontogênicos (n = 20) e tumores odontogênicos adenomatóides (TOA) (n = 8). A análise da expressão imunoistoquímica das proteínas CLIC4, E-caderina e vimentina no componente epitelial das lesões e de CLIC4 e α-SMA no tecido conjuntivo foi realizada de forma semi-quantitativa por um avaliador previamente calibrado. A expressão no componente epitelial de CLIC4 foi analisada separadamente no núcleo e no citoplasma, bem como a marcação de E-caderina que foi avaliada na membrana e no citoplasma. As comparações dos percentuais de imunorreatividade em relação aos grupos estudados foram realizadas por meio dos testes não paramétricos de Kruskal-Wallis e Mann-Whitney. Possíveis correlações entre a expressão de CLIC4, α-SMA, E-caderina e Vimentina foram avaliadas por meio do teste de correlação de Spearman. O nível de significância foi estabelecido em 5% (p < 0,05). Foram observados diferentes padrões de marcação entre os grupos analisados, observando-se que a imunoexpressão exclusivamente citoplasmática da CLIC4 no componente epitelial dos AM (p < 0,001) e TOA (p < 0,001) foi significativamente superior a dos CO, não demonstrarando significância estatística entre os AM e TOA. A imunoexpressão (nuclear e citoplasmática) da CLIC4 no revestimento epitelial CO foi significativamente superior à encontrada no componente epitelial dos AM (p < 0,001) e dos TOA (p < 0,001). A imunoexpressão estromal de CLIC4 foi significativamente superior nos AM (p = 0,009) e CO (p = 0,004) quando comparados aos TOA. A imunoexpressao de α-SMA significativamente maior em AM (p = 0,016) e CO (p = 0,034) quando comparados aos TOA. Para a imunoexpressão membranar da E-caderina em CO foi significativamente superior em comparação à encontrada nos AM (p = 0,009) e nos TOA (p = 0,024). Foi observada maior imunoexpressão de E-caderina (membranar e citoplasmática) nos COs, quando comparados aos AM (p < 0,001) e aos TOAs (p < 0,001). A expressão de Ecaderina citoplasmática foi significativamente maior nos AM e TOA (p < 0,001) quando comparados aos CO. Observou-se diferença estatisticamente significativa na imunoexpressão de vimentina entre os casos de AM e os casos de TOA (p = 0,038) e CO (p < 0,001), bem como entre o TOA e CO (p < 0,001). As correlações testadas entre os escores das proteínas estudadas evidenciou que no grupo dos AM foi possível evidenciar moderada correlação positiva e estatisticamente significativa (r = 0,527; p = 0,036) entre a expressão citoplasmática da CLIC4 e a expressão citoplasmática da E-caderina. Também foi verificada fraca correlação negativa e estatisticamente significativa (r = -0,499; p = 0,049) entre a expressão núcleo-citoplasmática da CLIC4 e a expressão citoplasmática da E-caderina nos AM. Além disso, uma moderada correlação positiva e estatisticamente significativa entre a expressão estromal da CLIC4 e a expressão da α-SMA nos AM (r = 0,648; p = 0,007) e nos CO (r = 0,541; p = 0,014). Foi observada forte correlação negativa e estatisticamente significativa (r = -0,813; p < 0,001) entre a expressão da E-caderina e a expressão da vimentina nos AM. Os resultados deste estudo sugerem um potencial envolvimento de CLIC4 no processo de transdiferenciação de miofibroblastos, e que a presença destas células é mais frequentemente associada a lesões de comportamento biológico mais agressivo como os AM e CO, além de uma possível atuação desta proteína na regulação do ciclo celular e na TEM nas lesões estudadas (AU).


Benign epithelial odontogenic lesions constitute a heterogeneous group of lesions. the CLIC4 protein acts in the regulation of growth arrest and apoptosis processes, also participating in the process of transdifferentiation of fibroblasts Into myofibroblasts that begin to express α-SMA. Furthermore, CLIC4 expression can interfere with the epithelialmesenchymal transition (EMT) process in neoplasms. This work evaluated the immunoexpression of CLIC4, α-SMA, e-cadherin and vimentin in ameloblastomas (AM) (n = 16), odontogenic keratocysts (OK) (n = 20) and adenomatoid odontogenic tumors (AOT) (n = 8). The analysis of the immunohistochemical expression of the proteins CLIC4, ecadherin and vimentin in the epithelial component of the lesions and of CLIC4 and α-SMA in the connective tissue was carried out in a semi-quantitative way by a previously calibrated evaluator. Expression in the epithelial component of CLIC4 was analyzed separately in the nucleus and cytoplasm, as well as e-cadherin labeling, which was evaluated in the membrane and cytoplasm. Comparisons of the percentages of immunoreactivity in relation to the studied groups were carried out using the nonparametric kruskal-wallis and mann-whitney tests. Possible correlations between the expression of CLIC4, α-SMA, e-cadherin and vimentin were evaluated using the spearman correlation test. The significance level was set at 5% (p < 0.05). Different staining patterns were observed between the groups analyzed, observing that the exclusively cytoplasmic immunoexpression of CLIC4 in the epithelial component of AM (p < 0.001) and AOT (p < 0.001) was significantly higher than that of OK, not demonstrating statistical significance between the AM and AOT. The immunoexpression (nuclear and cytoplasmic) of CLIC4 in the co epithelial lining was significantly higher than that found in the epithelial component of AM (p < 0.001) and AOT (p < 0.001). Stromal CLIC4 immunoexpression was significantly higher in AM (p = 0.009) and OK (p = 0.004) when compared to AOT. The immunoexpression of α-SMA is significantly higher in AM (p = 0.016) and OK (p = 0.034) when compared to AOT. For e-cadherin membrane immunoexpression in co was significantly higher compared to that found in AM (p = 0.009) and AOT (p = 0.024). Greater immunoexpression of e-cadherin (membrane and cytoplasmic) was observed in OK, when compared to AM (p < 0.001) and AOT (p < 0.001). Cytoplasmic ecadherin expression was significantly higher in AM and AOT (p < 0.001) when compared to OK. A statistically significant difference in vimentin immunoexpression was observed between cases of AM and cases of AOT (p = 0.038) and OK (p < 0.001), as well as between AOT and OK (p < 0.001). The correlations tested between the scores of the proteins studied showed that in the am group it was possible to demonstrate a moderate positive and statistically significant correlation (r = 0.527; p = 0.036) between the cytoplasmic expression of clic4 and the cytoplasmic expression of e-cadherin. A weak and statistically significant negative correlation (r = -0.499; p = 0.049) was also found between the nucleus-cytoplasmic expression of clic4 and the cytoplasmic expression of e- cadherin in AM. Furthermore, a moderate positive and statistically significant correlation between the stromal expression of CLIC4 and the expression of α-SMA in AM (r = 0.648; p = 0.007) and OK (r = 0.541; p = 0.014). Additionally, a strong negative and statistically significant correlation (r = -0.813; p < 0.001) was observed between the expression of ecadherin and the expression of vimentin in AM. The results of this study suggest a potential involvement of CLIC4 in the myofibroblast transdifferentiation process, and that the presence of these cells is more frequently associated with lesions with more aggressive biological behavior such as AM and OK, in addition to a possible role of this protein in the regulation of cell cycle and EMT in the lesions studied (AU).


Subject(s)
Ameloblastoma/pathology , Odontogenic Cysts/pathology , Cadherins/metabolism , Epithelium/injuries , Vimentin/metabolism , Cross-Sectional Studies/methods , Retrospective Studies , Statistics, Nonparametric , Myofibroblasts/pathology , Epithelial-Mesenchymal Transition
4.
Journal of Integrative Medicine ; (12): 561-574, 2023.
文章 在 英语 | WPRIM | ID: wpr-1010964

摘要

OBJECTIVE@#Xiaotan Sanjie recipe (XTSJ), a Chinese herbal compound medicine, exerts a significant inhibitory effect on gastric cancer (GC) metastasis. This work investigated the mechanism underlying the XTSJ-mediated inhibition of GC metastasis.@*METHODS@#The effect of XTSJ on GC metastasis and the associated mechanism were investigated in vitro, using GC cell lines, and in vivo, using a GC mouse model, by focusing on the expression of Glc-N-Ac-transferase V (GnT-V; encoded by MGAT5).@*RESULTS@#The migration and invasion ability of GC cells decreased significantly after XTSJ administration, which confirmed the efficacy of XTSJ in treating GC in vitro. XTSJ increased the accumulation of E-cadherin at junctions between GC cells, which was reversed by MGAT5 overexpression. XTSJ administration and MGAT5 knockdown alleviated the structural abnormality of the cell-cell junctions, while MGAT5 overexpression had the opposite effect. MGAT5 knockdown and XTSJ treatment also significantly increased the accumulation of proteins associated with the E-cadherin-mediated adherens junction complex. Furthermore, the expression of MGAT5 was significantly lower in the lungs of BGC-823-MGAT5 + XTSJ mice than in those of BGC-823-MGAT5 + solvent mice, indicating that the ability of gastric tumors to metastasize to the lung was decreased in vivo following XTSJ treatment.@*CONCLUSION@#XTSJ prevented GC metastasis by inhibiting the GnT-V-mediated E-cadherin glycosylation and promoting the E-cadherin accumulation at cell-cell junctions. Please cite this article as: Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J Integr Med. 2023; 21(6): 561-574.


Subject(s)
Male , Mice , Animals , Stomach Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Glycosylation , Cell Line, Tumor , Cadherins/metabolism
5.
Chinese Critical Care Medicine ; (12): 1309-1315, 2023.
文章 在 中文 | WPRIM | ID: wpr-1010945

摘要

OBJECTIVE@#To observe whether metformin (MET) inhibits transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway by activating adenosine activated protein kinase (AMPK), so as to alleviate the pulmonary fibrosis caused by paraquat (PQ) poisoning in mice.@*METHODS@#Male C57BL/6J mice were randomly divided into the Control group, PQ poisoning model group (PQ group), MET intervention group (PQ+MET group), AMPK agonist group (PQ+AICAR group), and AMPK inhibitor group (PQ+MET+CC group), according to a random number table method. A mouse model of PQ poisoning was established by one-time peritoneal injection of 1 mL PQ solution (20 mg/kg). The Control group was injected with the same volume of normal saline. After 2 hours of modeling, the PQ+MET group was given 2 mL of 200 mg/kg MET solution by gavage, the PQ+AICAR group was given 2 mL of 200 mg/kg AICAR solution by intraperitoneal injection, the PQ+MET+CC group was given 2 mL of 200 mg/kg MET solution by gavage and then 1 mL complex C (CC) solution (20 mg/kg) was intraperitoneally injected, the Control group and PQ group were given 2 mL of normal saline by gavage. The intervention was given once a day for 21 consecutive days. The 21-day survival rate of ten mice in each group was calculated, and the lung tissues of remaining mice were collected at 21 days after modeling. The pathological changes of lung tissues were observed under light microscope after hematoxylin-eosin (HE) staining and Masson staining, and the degree of pulmonary fibrosis was evaluated by Ashcroft score. The content of hydroxyproline in lung tissue and oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), phosphorylated AMPK (p-AMPK), TGF-β1 and phosphorylated Smad3 (p-Smad3) in lung tissue were detected by Western blotting.@*RESULTS@#Compared with the Control group, the 21 days survival rate was significantly reduced, lung fibrosis and Ashcroft score were significantly increased in PQ group. In addition, the content of hydroxyproline, MDA and the protein expressions of α-SMA, TGF-β1 and p-Smad3 in lung tissue were significantly increased, while the activity of SOD and the protein expressions of E-cadherin and p-AMPK were significantly decreased in PQ group. Compared with the PQ group, the 21 days survival rates of mice were significantly improved in the PQ+MET group and PQ+AICAR group (70%, 60% vs. 20%, both P < 0.05). The degree of pulmonary fibrosis and the Ashcroft score were significantly reduced (1.50±0.55, 2.00±0.63 vs. 6.67±0.52, both P < 0.05). The content of hydroxyproline and MDA in lung tissue, as well as α-SMA, TGF-β1 and p-Smad3 protein expressions were significantly reduced [hydroxyproline (mg/L): 2.03±0.11, 3.00±0.85 vs. 4.92±0.65, MDA (kU/g): 2.06±1.48, 2.10±1.80 vs. 4.06±1.33, α-SMA/GAPDH: 0.23±0.06, 0.16±0.06 vs. 1.00±0.09, TGF-β1/GAPDH: 0.28±0.03, 0.53±0.05 vs. 0.92±0.06 p-Smad3/GAPDH: 0.52±0.04, 0.69±0.06 vs. 1.11±0.10, all P < 0.05], SOD activity and the protein expressions of E-cadherin and p-AMPK were significantly increased [SOD (μmol/g): 39.76±1.35, 33.03±1.28 vs. 20.08±1.79, E-cadherin/GAPDH: 0.91±0.08, 0.72±0.08 vs. 0.26±0.04, p-AMPK/GAPDH: 0.62±0.04, 0.60±0.01 vs. 0.20±0.04, all P < 0.05]. However, these protective effects of MET were inhibited by the addition of AMPK inhibitor CC solution.@*CONCLUSIONS@#MET can effectively alleviate the degree of pulmonary fibrosis in mice poisoned with PQ, and its mechanism may be related to the activation of AMPK and inhibition of TGF-β1/Smad3 signaling pathway, which can be inhibited by AMPK inhibitor CC.


Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/drug therapy , Paraquat , AMP-Activated Protein Kinases/pharmacology , Metformin/pharmacology , Hydroxyproline/pharmacology , Saline Solution , Mice, Inbred C57BL , Lung/metabolism , Transforming Growth Factor beta1/pharmacology , Cadherins , Superoxide Dismutase
6.
文章 在 中文 | WPRIM | ID: wpr-971038

摘要

OBJECTIVES@#To study the significance of E-cadherin and the association between E-cadherin methylation status and prognosis in children with acute lymphoblastic leukemia (ALL) by examining the mRNA and protein expression of E-cadherin and its gene methylation status in bone marrow mononuclear cells of children with ALL.@*METHODS@#The samples of 5 mL bone marrow blood were collected from 42 children with ALL who were diagnosed for the first time at diagnosis (pre-treatment group) and on day 33 of induction chemotherapy (post-treatment group). RT-qPCR, Western blot, and methylation-specific PCR were used to measure the mRNA and protein expression of E-cadherin and the methylation level of the E-cadherin gene. The changes in each index after induction chemotherapy were compared.@*RESULTS@#The mRNA and protein expression levels of E-cadherin in the post-treatment group were significantly higher than those in the pre-treatment group (P<0.05), while the positive rate of E-cadherin gene methylation in the post-treatment group was significantly lower than that in the pre-treatment group (P<0.05). At the end of the test, the children with negative methylation had significantly higher overall survival rate and event-free survival rate than those with positive methylation (P<0.05).@*CONCLUSIONS@#E-cadherin expression is associated with the development of ALL in children, and its decreased expression and increased methylation level may indicate a poor prognosis.


Subject(s)
Child , Humans , Cadherins/genetics , DNA Methylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , RNA, Messenger
7.
文章 在 中文 | WPRIM | ID: wpr-1011093

摘要

Objective:To explore the expression and importance of Piezo1, E-cadherin, and Vimentin in nasal polyps patients. Methods:Thirty-five patients undergoing endoscopic sinus surgery under general anesthesia were streamed into 20 cases of nasal polyps(NP group) and 15 cases of simple septoplasty without any sinus disease(Control group). Immunofluorescence staining and Western Blot were applied to detect the protein level of Piezo1, E-cadherin, and Vimentin in NP tissues and nasal polyp-derived primary human nasal epithelial cells(pHNECs). Also, BEAS-2B cell lines were treated with human TGF-β1 protein to establish epithelial mesenchymal transition(EMT) model in vitro and quantitative real-time polymerase chain reaction were used to calculate Piezo1 and above biomarkers in the model. Results:Compared with control group, Piezo1 and Vimentin showed higher level while E-cadherin was lower in NP tissues and pHNECs.In EMT model in vitro, Piezo1 and Vimentin were demonstrated higher expression with decreased level of E-cadherin. Conclusion:The tendency of Piezo1 is consistent with the mesenchymal-related biomarker Vimentin, going against with epithelial-related biomarker E-cadherin, implying its involvement with EMT process in nasal polyps.


Subject(s)
Humans , Biomarkers/metabolism , Cadherins/metabolism , Chronic Disease , Epithelial-Mesenchymal Transition , Nasal Polyps/metabolism , Rhinosinusitis , Sinusitis , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism
8.
文章 在 中文 | WPRIM | ID: wpr-1009873

摘要

OBJECTIVES@#To explore the role and potential mechanisms of chitinase-3-like protein 1 (CHI3L1) in coronary artery lesions in a mouse model of Kawasaki disease (KD)-like vasculitis.@*METHODS@#Four-week-old male SPF-grade C57BL/6 mice were randomly divided into a control group and a model group, with 10 mice in each group. The model group mice were intraperitoneally injected with 0.5 mL of lactobacillus casei cell wall extract (LCWE) to establish a mouse model of KD-like vasculitis, while the control group mice were injected with an equal volume of normal saline. The general conditions of the mice were observed on the 3rd, 7th, and 14th day after injection. Changes in coronary artery tissue pathology were observed using hematoxylin-eosin staining. The level of CHI3L1 in mouse serum was measured by enzyme-linked immunosorbent assay. Immunofluorescence staining was used to detect the expression and localization of CHI3L1, von Willebrand factor (vWF), and α-smooth muscle actin (α-SMA) in coronary artery tissue. Western blot analysis was used to detect the expression of CHI3L1, vWF, vascular endothelial cadherin (VE cadherin), Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), nuclear factor κB (NF-κB), and phosphorylated NF-κB (p-NF-κB) in coronary artery tissue.@*RESULTS@#The serum level of CHI3L1 in the model group was significantly higher than that in the control group (P<0.05). Compared to the control group, the expression of CHI3L1 in the coronary artery tissue was higher, while the expression of vWF was lower in the model group. The relative expression levels of CHI3L1, Bax, Caspase-3, NF-κB, and p-NF-κB were significantly higher in the model group than in the control group (P<0.05). The relative expression levels of vWF, VE cadherin, and Bcl-2 were lower in the model group than in the control group (P<0.05).@*CONCLUSIONS@#In the LCWE-induced mouse model of KD-like vasculitis, the expression levels of CHI3L1 in serum and coronary arteries increase, and it may play a role in coronary artery lesions through endothelial cell apoptosis mediated by inflammatory reactions.


Subject(s)
Male , Animals , Mice , Mucocutaneous Lymph Node Syndrome/pathology , Coronary Vessels/pathology , NF-kappa B , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Chitinase-3-Like Protein 1 , von Willebrand Factor/metabolism , Mice, Inbred C57BL , Cadherins
9.
文章 在 中文 | WPRIM | ID: wpr-1008758

摘要

This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.


Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Epimedium/metabolism , Fibronectins/metabolism , Matrix Metalloproteinase 7/therapeutic use , Matrix Metalloproteinase 8/therapeutic use , Vimentin/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Lung , Collagen/metabolism , Bleomycin/toxicity , RNA, Messenger/metabolism , Cadherins/metabolism
10.
文章 在 中文 | WPRIM | ID: wpr-971527

摘要

OBJECTIVE@#To explore the molecular mechanisms of Porphyromonas gingivalis infection-induced umbilical vein endothelial barrier dysfunction in vitro.@*METHODS@#Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and after the formation of the endothelial barrier, the cells were infected with P. gingivals at a multiplicity of infection (MOI). The transepithelial electrical resistance (TEER) of the cell barrier was measured, and FITC-dextran trans-endothelial permeability assay and bacterial translocation assay were performed to assess the endothelial barrier function. The expression levels of cell junction proteins including ZO-1, occludin and VE-cadherin in the cells were examined by qRT-PCR and Western blotting.@*RESULTS@#In freshly seeded HUVECs, TEER increased until reaching the maximum on Day 5 (94 Ωcm2), suggesting the formation of the endothelial barrier. P. gingivals infection caused an increase of the permeability of the endothelial barrier as early as 0.5 h after bacterial inoculation, and the barrier function further exacerbated with time, as shown by significantly lowered TEER, increased permeability of FITC-dextran (40 000/70 000), and increased translocation of SYTO9-E. coli cross the barrier. MTT assay suggested that P. gingivals infection did not significantly affect the proliferation of HUVECs (P>0.05), but in P. gingivalsinfected cells, the expressions of ZO-1, occludin and VE-cadherin increased significantly at 24 and 48 h after bacterial inoculation (P < 0.05).@*CONCLUSION@#P. gingivals may disrupt the endothelial barrier function by down-regulating the expressions of the cell junction proteins (ZO-1, occludin, VE-cadherin) and increasing the permeability of the endothelial barrier.


Subject(s)
Humans , Cadherins/metabolism , Escherichia coli/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Occludin , Porphyromonas gingivalis/metabolism , Umbilical Veins/metabolism
11.
文章 在 中文 | WPRIM | ID: wpr-1008675

摘要

This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.


Subject(s)
Humans , Matrix Metalloproteinase 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Vimentin/metabolism , Matrix Metalloproteinase 9/metabolism , Cell Line, Tumor , Wnt Signaling Pathway , Cadherins/genetics , Melanoma/genetics , Cyclin D/metabolism , Cell Proliferation , Boraginaceae/genetics , RNA, Messenger , Cell Movement
12.
文章 在 中文 | WPRIM | ID: wpr-1009435

摘要

Objective To explore the protective mechanism of transdifferentiation of glomerular endothelial cells based on the differentiated embryonic chondrocyte gene 2 (DEC2) via the TGF-β/ROCK1 signaling pathway. Methods The 24 mice were randomly divided into sham group, UUO group, UUO combined with vector group and UUO combined with DEC2 group, with 6 mice in each group. A unilateral ureteral obstruction (UUO) model was established in each group, except for the sham group. In the UUO combined with vector group and UUO combined with DEC2 group, 10 μL (108 PFU) of vector or DEC2 was injected into each kidney on day 0 (immediately after UUO) under the guidance of the ultrasound system. The mice were sacrificed 14 days after the operation, and the kidneys were collected for histological examination and Western blot analysis: HE staining was used to observe the histological changes of kidneys, Masson staining to observe the renal fibrosis, and Western blot analysis to detect the protein expression. In vitro, normal human glomerular endothelial cells (GEnCs) was selected as the research objects. GEnCs stimulated with TGF-β were treated with ROCK1 inhibitor Y-27632 or DEC2 transfection. Western blot analysis was used to detect the expression of ROCK1, α-SMA, DEC2 and E-cadherin in GEnC exposed to transforming growth factor β (TGF-β). The localization of ROCK1 and DEC2 in GEnCs cells was detected by immunofluorescence cytochemistry. The relationship between the ROCK1 and DEC2 was confirmed by co-immunoprecipitation. Results Compared with the sham group, the UUO groups showed significant renal fibrosis and collagen accumulation on the 14th day. In the UUO groups, the expression of DEC2 and E-cadherin in the kidney tissue of the mice was significantly reduced, and the expression of α-SMA significantly increased. Compared with the UUO combined with vector group, the kidney fibrosis and collagen accumulation in the UUO combined with DEC2 group decreased, and the expression of ROCK1 and α-SMA decreased and the expression of DEC2 and E-cadherin increased in the kidney tissue. TGF-β enhanced the expression of ROCK1 and α-SMA in GEnCs cells in a time-dependent manner, and the levels of DEC2 and E-cadherin decreased. Treatment with the ROCK1 inhibitor Y-27632 partially abrogated the TGF-β-induced increase in the expression of ROCK1 and α-SMA and decrease in the expression of DEC2 and E-cadherin. In addition, transfection of GEnCs cells with DEC2 before TGF-β stimulation reduced the expression of ROCK1 and α-SMA, and increased the expression of DEC2 and E-cadherin. Immunofluorescence cytochemical staining showed that DEC2 co-localized with ROCK1 in GEnCs, and the co-immunoprecipitation showed that DEC2 and ROCK1 pulled down each other. Conclusions DEC2 is down-regulated in fibrotic renal tissue, while up-regulated DEC2 inhibits epithelial myofibroblast transdifferentiation and renal fibrosis of GEnC by blocking TGF-β/ROCK1 signaling pathway.


Subject(s)
Humans , Animals , Mice , Cell Transdifferentiation , Chondrocytes , Endothelial Cells , Cadherins , Signal Transduction , rho-Associated Kinases
13.
文章 在 中文 | WPRIM | ID: wpr-981908

摘要

Objective To investigate the effects of microRNA497 (miR-497) on the metastasis of gastric cancer and its possible molecular mechanism. Methods SGC-7901 gastric cancer parent cells were cultured in an ultra-low adhesion environment, and the anoikis resistance model of SGC-7901 cells was created after re-adhesion. Clone formation assay, flow cytometry, TranswellTM test and scratch healing test were used to detect the differences of biological behavior compared with their parent cells. Fluorescence quantitative PCR was performed to detect the expression of miR-497. Western blot analysis was used to detect the changes of key proteins of Wnt/β-catenin signaling pathway and epithelial mesenchymal transformation (EMT) related proteins such as vimentin and E-cadherin. Parent cells and anoikis resistant SGC-7901 cells were transfected with miR-497 inhibitor or miR-497 mimic, and CCK-8 assay was used to detect the proliferation activity. TranswellTM invasion assay was performed to detect the invasion ability of cells. TranswellTM migration test and scratch healing assay was used to determine the migration ability. Western blot analysis was used to detect the expressions of Wnt1, β-catenin, vimentin and E-cadherin. By transfecting miR-497 mimic into the anoikis resistance SGC-7901 cells and inoculating them subcutaneously in nude mice, the changes in the volume and mass of tumor tissues were measured and recorded. Western blot analysis was used to determine the expressions of Wnt1, β-catenin, vimentin and E-cadherin of tumor tissues. Results Compared with the parent cells, the anoikis resistance SGC-7901 gastric cancer cells had faster proliferation rate, stronger colony formation, lower apoptosis rate, stronger invasion and migration ability. The expression of miR-497 was significantly decreased. After down-regulation of miR-497, the proliferation ability, invasion and migration ability were significantly enhanced. The expressions of Wnt1, β-catenin and vimentin increased significantly, while E-cadherin decreased notably. The results of up-regulation miR-497 were the opposite. The tumor growth rate, tumor volume and mass of miR-497 overexpression group were significantly lower than those of control group. The expressions of Wnt1, β-catenin and vimentin decreased significantly, while the expression of E-cadherin increased significantly. Conclusion The expression of miR-497 is low in the anoikis resistance SGC-7901 cells. miR-497 can inhibit the growth and metastasis of gastric cancer cells by blocking Wnt/β-catenin signaling pathway and EMT.


Subject(s)
Animals , Mice , Humans , beta Catenin/metabolism , MicroRNAs/metabolism , Vimentin/metabolism , Stomach Neoplasms/pathology , Anoikis/genetics , Wnt Signaling Pathway/genetics , Mice, Nude , Cell Proliferation/genetics , Cadherins/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics
14.
文章 在 中文 | WPRIM | ID: wpr-981872

摘要

Objective To investigate the effect of 1, 25-(OH)2-VitD3 (VitD3) on renal tubuleinterstitial fibrosis in diabetic kidney disease. Methods NRK-52E renal tubular epithelial cells were divided into control group (5.5 mmol/L glucose medium treatment), high glucose group (25 mmol/L glucose medium treatment) and high glucose with added VitD3 group (25 mmol/L glucose medium combined with 10-8 mmol/L VitD3). The mRNA and protein expression of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in NRK-52E cells were detected by real-time quantitative PCR and Western blot analysis respectively. The expression and localization of Snail1, SMAD3 and SMAD4 were detected by immunofluorescence cytochemical staining. The binding of Snail1 with SMAD3/SMAD4 complex to the promoter of Coxsackie-adenovirus receptor (CAR) was detected by chromatin immunoprecipitation. The interaction among Snail1, SMAD3/SMAD4 and E-cadherin were detected by luciferase assay. Small interfering RNA (siRNA) was used to inhibit the expression of Snail1 and SMAD4, and the expression of mRNA of E-cadherin was detected by real-time quantitative PCR. SD rats were randomly divided into control group, DKD group and VitD3-treated group. DKD model was established by injection of streptozotocin (STZ) in DKD group and VitD3-treated group. After DKD modeling, VitD3-treated group was given VitD3 (60 ng/kg) intragastric administration. Control group and DKD group were given normal saline intragastric administration. In the DKD group and VitD3-treated group, insulin (1-2 U/kg) was injected subcutaneously to control blood glucose for 8 weeks. The mRNA and protein levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissues were detected by real-time quantitative PCR and Western blot analysis respectively. Immunohistochemistry was used to detect the expression and localization of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissue. Results Compared with the control group, the mRNA and protein expressions of Snail1, SMAD3, SMAD4 and α-SMA in NRK-52E cells cultured with high glucose and in DKD renal tissues were up-regulated, while E-cadherin expression was down-regulated. After the intervention of VitD3, the expression levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in the DKD model improved to be close to those in the control group. Chromatin immunoprecipitation showed that Snail1 and SMAD3/SMAD4 bound to CAR promoter IV, while VitD3 prevented Snail1 and SMAD3/SMAD4 from binding to CAR promoter IV. Luciferase assay confirmed the interaction among Snail1, SMAD3/SMAD4 and E-cadherin. After the mRNA of Snail1 and SMAD4 was inhibited by siRNA, the expression of E-cadherin induced by high glucose was up-regulated. Conclusion VitD3 could inhibit the formation of Snail1-SMAD3/SMAD4 complex and alleviate the renal tubulointerstitial fibrosis in DKD.


Subject(s)
Animals , Rats , Cadherins/genetics , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Epithelial-Mesenchymal Transition , Fibrosis/pathology , Glucose/pharmacology , Kidney/pathology , Rats, Sprague-Dawley , RNA, Messenger , RNA, Small Interfering , Transforming Growth Factor beta1/metabolism , Vitamin D/pharmacology
15.
文章 在 中文 | WPRIM | ID: wpr-981309

摘要

We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , bcl-2-Associated X Protein , Vimentin/metabolism , Cell Proliferation , Signal Transduction , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/genetics , Cadherins/genetics , Cell Movement
16.
文章 在 中文 | WPRIM | ID: wpr-987031

摘要

OBJECTIVE@#To investigate the protective effects of total saponins from Panax japonicus (TSPJ) against high-fat dietinduced testicular Sertoli cell junction damage in mice.@*METHODS@#Forty male C57BL/6J mice were randomized into normal diet group, high-fat diet group, and low-dose (25 mg/kg) and high-dose (75 mg/kg) TSPJ treatment groups (n=10). The mice in the normal diet group were fed a normal diet, while the mice in the other groups were fed a high-fat diet. After TSPJ treatment via intragastric administration for 5 months, the testes and epididymis of the mice were collected for measurement of weight, testicular and epididymal indices and sperm parameters. HE staining was used for histological evaluation of the testicular tissues and measurement of seminiferous tubule diameter and seminiferous epithelium height. The expression levels of ZO-1, occludin, claudin11, N-cadherin, E-cadherin and β-catenin in Sertoli cells were detected with Western blot, and the localization and expression levels of ZO-1 and β-catenin in the testicular tissues were detected with immunofluorescence assay. The protein expressions of LC3B, p-AKT and p-mTOR in testicular Sertoli cells were detected using double immunofluorescence assay.@*RESULTS@#Treatment with TSPJ significantly improved high-fat diet-induced testicular dysfunction by reducing body weight (P < 0.001), increasing testicular and epididymal indices (P < 0.05), and improving sperm concentration and sperm viability (P < 0.05). TSPJ ameliorated testicular pathologies and increased seminiferous epithelium height of the mice with high-fat diet feeding (P < 0.05) without affecting the seminiferous tubule diameter. TSPJ significantly increased the expression levels of ZO-1, occludin, N-cadherin, E-cadherin and β-catenin (P < 0.05) but did not affect claudin11 expression in the testicular tissues. Immunofluorescence assay showed that TSPJ significantly increased ZO-1 and β-catenin expression in the testicular tissues (P < 0.001), downregulated LC3B expression and upregulated p-AKT and p-mTOR expressions in testicular Sertoli cells.@*CONCLUSION@#TSPJ alleviates high-fat diet-induced damages of testicular Sertoli cell junctions and spermatogenesis possibly by activating the AKT/mTOR signaling pathway and inhibiting autophagy of testicular Sertoli cells.


Subject(s)
Male , Animals , Mice , Mice, Inbred C57BL , Testis , Sertoli Cells , beta Catenin , Diet, High-Fat , Occludin , Proto-Oncogene Proteins c-akt , Seeds , Cadherins , Intercellular Junctions
17.
Chinese Journal of Oncology ; (12): 482-489, 2023.
文章 在 中文 | WPRIM | ID: wpr-984747

摘要

Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.


Subject(s)
Humans , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Vimentin/metabolism , Dimethyl Sulfoxide , HSP27 Heat-Shock Proteins/metabolism , Histones/metabolism , Cadherins/metabolism , Cell Movement , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
18.
Chinese Journal of Oncology ; (12): 389-395, 2023.
文章 在 中文 | WPRIM | ID: wpr-984734

摘要

Objective: To construct a new co-cultured liver cancer research model composed of activated hepatic stellate cells (aHSC) and liver cancer cells, explore the efficacy difference between it and traditional model, so as to establish a liver cancer research model in vitro and in vivo that can reflect the real clinical efficacy. Methods: A new co-culture model of liver cancer consisting of aHSC and liver cancer cells was constructed. The differences in efficacy between the new co-culture model and the traditional single cell model were compared by cytotoxicity test, cell migration test, drug retention test and in vivo tumor inhibition test. Western blot was used to detect the drug-resistant protein P-gp and epithelial-mesenchymal transition-related proteins. Masson staining was used to observe the deposition of collagen fibers in tumor tissues of tumor-bearing mice. CD31 immunohistochemical staining was used to observe the microvessel density in tumor tissues of tumor-bearing mice. Results: The cytotoxicity of single cell model and co-culture model was dose-dependent. With the increase of curcumin (CUR) concentration, the cell viability decreased, but the cell viability of single cell model decreased faster than that of co-culture model. When the concentration of CUR was 10 μg/ml, the cell viability of the co-culture model was 62.3% and the migration rate was (28.05±3.68)%, which were higher than those of the single cell model [38.5% and (14.91±5.92)%, both P<0.05]. Western blot analysis showed that the expressions of P-gp and vimentin were up-regulated in the co-culture model, which were 1.55 and 2.04 fold changes of the single cell model, respectively. The expression of E-cadherin was down-regulated, and the expression level of E-cadherin in the single cell model was 1.17 fold changes of the co-culture model. Drug retention experiment showed that the co-culture model could promote drug efflux and reduce drug retention. In vivo tumor inhibition experiment showed that the m-HSC+ H22 co-transplantation model had faster tumor growth and larger tumor volume than those of the H22 single cell transplantation model. After CUR treatment, the tumor growths of m-HSC+ H22 co-transplantation model and H22 single cell transplantation model were inhibited. Masson staining showed that the deposition of collagen fibers in tumor tissues of m-HSC+ H22 co-transplantation model mice was more than that of H22 single cell transplantation model. CD31 immunohistochemical staining showed that the microvessel density in tumor tissue of m-HSC+ H22 co-transplantation model was higher than that of H22 single cell transplantation model. Conclusions: The aHSC+ liver cancer cell co-culture model has strong proliferation and metastasis ability and is easy to be resistant to drugs. It is a new type of liver cancer treatment research model superior to the traditional single cell model.


Subject(s)
Animals , Mice , Tumor Microenvironment , Coculture Techniques , Liver Neoplasms/pathology , Cadherins , Curcumin/pharmacology , Collagen , Cell Line, Tumor
19.
Chinese Journal of Oncology ; (12): 375-381, 2023.
文章 在 中文 | WPRIM | ID: wpr-984732

摘要

Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/pathology , HeLa Cells , Fibronectins/metabolism , Culture Media, Conditioned , Carcinoma, Squamous Cell/metabolism , Adenocarcinoma , Cadherins/metabolism , RNA, Messenger/metabolism , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Proliferation , S100 Calcium Binding Protein A7/metabolism
20.
Neuroscience Bulletin ; (6): 1131-1145, 2023.
文章 在 英语 | WPRIM | ID: wpr-982446

摘要

Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.


Subject(s)
Mice , Animals , Ependymoglial Cells/physiology , Cadherins , Neurons/metabolism , Cerebral Cortex/metabolism , Cell Differentiation , Cell Movement
搜索明细