Your browser doesn't support javascript.
loading
節目: 20 | 50 | 100
结果 1 - 1 de 1
过滤器
添加過濾器








年份範圍
1.
Indian J Biochem Biophys ; 2013 Aug; 50(4): 318-325
文章 在 英语 | IMSEAR | ID: sea-148614

摘要

The individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m-2 d-1) and elevated O3 (ambient + 10 ppb) were evaluated under field conditions using open top chambers on two cultivars, Padmini and T-397 of linseed (Linum usitatissimum L.). Mean monthly surface level of O3 concentrations varied from 27.7 ppb to 59.0 ppb during the experimental period. Both UV-B and O3 induced the production of ROS (H2O2 and O2.-), resulting in significant damage of membranes due to lipid peroxidation and electrolyte leakage. Synthesis of secondary metabolites (flavonoids, anthocyanin, lignin and wax) was also enhanced in all the treatments, whereas biomass and yield were reduced. Alterations in frequency of stomata and wax distribution were also observed through scanning electron microscopy (SEM). Cultivar Padmini was found to be more sensitive because of higher damage of membrane vis-a-vis reduction in biomass and seed yield. However, concentrations of flavonoids, anthocyanin, lignin and wax were higher in T-397, suggesting its relative resistance against applied stress. Combined exposure of sUV-B and O3 was less harmful, as compared to their individual treatment. Among the three treatments, O3 was found to be more detrimental for overall growth and sUV-B for economic yield.


Subject(s)
Adaptation, Physiological/drug effects , Adaptation, Physiological/radiation effects , Anthocyanins/metabolism , Biomass , Flax/drug effects , Flax/metabolism , Flax/physiology , Flax/radiation effects , Hydrogen Peroxide/metabolism , Lignin/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Ozone/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Stress, Physiological/radiation effects , Superoxides/metabolism , Surface Properties , Ultraviolet Rays/adverse effects , Waxes/metabolism
搜索明细