Your browser doesn't support javascript.
loading
Effect of micro-arc oxidation treatment on biological activity of medical metals / 中国组织工程研究
Article ي Zh | WPRIM | ID: wpr-1021305
المكتبة المسؤولة: WPRO
ABSTRACT
BACKGROUND:Among the surface modification technologies of metal implants,micro-arc oxidation has been widely concerned for its convenience,low cost and ability to effectively adjust the microstructure and elements of surface coatings. OBJECTIVE:To summarize research advances in physical and chemical properties and biological activities of oxidation coatings prepared by micro-arc oxidation on different materials. METHODS:The articles about the effects of micro-arc oxidation on the biological activity of medical metals were searched in PubMed and Web of Science based on the English search terms"MAO,micro-arc oxidation,osseointegration,mechanical property,biological activity,angiogenesis,fibrogenesis".The search time was from January 2016 to December 2022.According to the inclusion and exclusion criteria,82 articles were finally retained for review. RESULTS AND CONCLUSION:Micro-arc oxidation is a potential surface modification technology,which can greatly improve the success rate of implantation,and can be widely used in other fields.The specific reasons are as follows:(1)Micro-arc oxidation technology forms special porous morphology on the surface of materials,which can optimize the mechanical properties such as wear resistance and corrosion resistance,contributing to the reduction of the degradation rate of magnesium alloys.(2)Micro-arc oxidation technology can significantly enhance the bioactivity and improve the bioinertness of titanium and titanium alloys through the addition of strontium,hydroxyapatite and other metallic or nonmetallic substances to its porous morphology for helping elevate its osteogenic differentiation,angiogenesis,fibrogenesis and other biological activities.
Key words
النص الكامل: 1 الفهرس: WPRIM اللغة: Zh مجلة: Chinese Journal of Tissue Engineering Research السنة: 2024 نوع: Article
النص الكامل: 1 الفهرس: WPRIM اللغة: Zh مجلة: Chinese Journal of Tissue Engineering Research السنة: 2024 نوع: Article