Your browser doesn't support javascript.
loading
Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis
Protein & Cell ; (12): 745-754, 2011.
Article in En | WPRIM | ID: wpr-757045
Responsible library: WPRO
ABSTRACT
The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.
Subject(s)
Full text: 1 Index: WPRIM Main subject: Pharmacology / Plasmids / Prephenate Dehydrogenase / Aspartate Kinase / Threonine / Binding Sites / Molecular Sequence Data / Chemistry / Amino Acid Sequence / Cloning, Molecular Language: En Journal: Protein & Cell Year: 2011 Type: Article
Full text: 1 Index: WPRIM Main subject: Pharmacology / Plasmids / Prephenate Dehydrogenase / Aspartate Kinase / Threonine / Binding Sites / Molecular Sequence Data / Chemistry / Amino Acid Sequence / Cloning, Molecular Language: En Journal: Protein & Cell Year: 2011 Type: Article