Your browser doesn't support javascript.
loading
Inhibitory Effect and Mechanism of Jingulian Extract on LPS-induced RAW264.7 Cell Inflammatory Response Based on PI3K/Akt Signaling Pathway / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-35, 2021.
Article in Chinese | WPRIM | ID: wpr-906327
ABSTRACT

Objective:

To explore the inhibitory effect and mechanism of Jingulian extract (JGL) on inflammation.

Method:

The following groups were set up in this study: a control group (10% fetal bovine serum), a lipopolysaccharide (LPS) model group (0.5 mg·L<sup>-1</sup>), and JGL groups (10, 20, 40, 60, 80, 120, 160, 200, 250, 300 mg·L<sup>-1</sup> + 0.5 mg·L<sup>-1 </sup>LPS). The RAW264.7 cells were cultured for 24 hours. Cell proliferation was detected by cell counting kit-8 (CCK-8) assay. Nitric oxide (NO) release was detected by Griess assay. The release of cytokines interleukin (IL)-1<italic>β</italic>, IL-6IL-10, and tumor necrosis factor (TNF)-<italic>α</italic> was determined by enzyme linked immunosorbent assayELISA). The expression of inducible nitric oxide synthase (iNOS) and intraprostaglandin peroxidase synthase 2 (PTGS2)/cyclooxygenase-2 (COX-2) was measured by real-time fluorescence-based quantitative polymerase chain reactionReal-time PCR) and the activation of key proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by Western blot.

Result:

Compared with the control group, LPS (0.5 mg·L<sup>-1</sup>)could promote the proliferation of RAW264.7 cells after stimulation for 24 hours (<italic>P</italic><0.01). Compared with the model group, JGL had no significant effect on cell proliferation. Compared with the control group, LPS (0.5 mg·L<sup>-1</sup>)increased the release of NO, IL-1<italic>β</italic>, IL-6IL-10, and TNF-<italic>α</italic> (<italic>P</italic><0.01). Compared with the model group, JGL (20-300 mg·L<sup>-1</sup>)inhibited the release of NO in a dose-dependent manner after stimulation for 24 hours (<italic>P</italic><0.05) and reduced IL-1<italic>β</italic>, IL-6, and IL-10 (<italic>P</italic><0.05, <italic>P</italic><0.01), but no obvious inhibition on the release of TNF-<italic>α</italic> was observed. LPS (0.5 mg·L<sup>-1</sup>) could induce the expression of iNOS and PTGS2/COX-2 genes as compared with the control group (<italic>P</italic><0.05, <italic>P</italic><0.01). JGL could down-regulate the mRNA expression of iNOS and PTGS2/COX-2 genes as compared with the model group (<italic>P</italic><0.05, <italic>P</italic><0.01). LPS (0.5 mg·L<sup>-1</sup>) could activate the PI3K/Akt pathway (<italic>P</italic><0.01) as compared with the control group, while JGL (10, 20, 40, and 80 mg·L<sup>-1</sup>) decreased the expression of PI3K-p110, p-p85, and p-Akt (<italic>P</italic><0.01), and inhibited the activation of PI3K/Akt pathway.

Conclusion:

JGL extract could significantly inhibit the inflammatory response and activation of the PI3K/Akt pathway induced by LPS in RAW264.7 cells. The anti-inflammatory effect was related to the inhibition of the PI3K/Akt pathway.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2021 Type: Article